Archaeal DNA polymerases in biotechnology
详细信息    查看全文
  • 作者:Likui Zhang ; Manyu Kang ; Jiajun Xu ; Yanchao Huang
  • 关键词:Archaeal DNA pols ; PCR ; DNA sequencing ; Site ; directed mutagenesis ; Fidelity ; Processivity
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:99
  • 期:16
  • 页码:6585-6597
  • 全文大小:1,564 KB
  • 参考文献:Al-Soud WA, Radstrom P (2001) Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol 39:485鈥?93PubMed Central PubMed
    Arezi B, Hansen CJ, Hogrefe HH (2002) Efficient and high fidelity incorporation of dye-terminators by a novel archaeal DNA polymerase mutant. J Mol Biol 322:719鈥?29PubMed
    Bae H, Kim KP, Lee JI, Song JG, Kil EJ, Kim JS, Kwon ST (2009) Characterization of DNA polymerase from the hyperthermophilic archaeon Thermococcus marinus and its application to PCR. Extremophiles 13:657鈥?67PubMed
    Bath C, Cukalac T, Porter K, Dyall-Smith ML (2006) His1 and His2 are distantly related, spindle-shaped haloviruses belonging to the novel virus group, Salterprovirus. Virology 350:228鈥?39PubMed
    Bergen K, Betz K, Welte W, Diederichs K, Marx A (2013) Structures of KOD and 9 degrees N DNA polymerases complexed with primer template duplex. Chembiochem 14:1058鈥?062PubMed
    Bi L, Kim DH, Ju J (2006) Design and synthesis of a chemically cleavable fluorescent nucleotide, 3鈥?O-allyl-dGTP-allyl-bodipy-FL-510, as a reversible terminator for DNA sequencing by synthesis. J Am Chem Soc 128:2542鈥?543PubMed
    Biles BD, Connolly BA (2004) Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res 32:e176PubMed Central PubMed
    Blanco L, Bernad A, Lazaro JM, Martin G, Garmendia C, Salas M (1989) Highly efficient DNA synthesis by the phage phi 29 DNA polymerase. Symmetrical mode of DNA replication. J Biol Chem 264:8935鈥?940PubMed
    Bohlke K, Pisani FM, Vorgias CE, Frey B, Sobek H, Rossi M, Antranikian G (2000) PCR performance of the B-type DNA polymerase from the thermophilic euryarchaeon Thermococcus aggregans improved by mutations in the Y-GG/A motif. Nucleic Acids Res 28:3910鈥?917PubMed Central PubMed
    Bonch-Osmolovskaya E, Svetliechny V, Ankenbauer W, Schmitz Agheuian G, Angee B, Ebenbichler C, Laue F (1996) Thermostable nucleic acid polymerase from Thermococcus gorgonarius. Patent appl no EP 0834570 A1
    Boudsocq F, Iwai S, Hanaoka F, Woodgate R (2001) Sulfolobus solfataricus P2 DNA polymerase IV (Dpo4): an archaeal DinB-like DNA polymerase with lesion-bypass properties akin to eukaryotic poleta. Nucleic Acids Res 29:4607鈥?616PubMed Central PubMed
    Boudsocq F, Kokoska RJ, Plosky BS, Vaisman A, Ling H, Kunkel TA, Yang W, Woodgate R (2004) Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J Biol Chem 279:32932鈥?2940PubMed
    Burgers PM, Koonin EV, Bruford E, Blanco L, Burtis KC, Christman MF, Copeland WC, Friedberg EC, Hanaoka F, Hinkle DC, Lawrence CW, Nakanishi M, Ohmori H, Prakash L, Prakash S, Reynaud CA, Sugino A, Todo T, Wang Z, Weill JC, Woodgate R (2001) Eukaryotic DNA polymerases: proposal for a revised nomenclature. J Biol Chem 276:43487鈥?3490PubMed
    Cambon-Bonavita MA, Schmitt P, Zieger M, Flaman JM, Lesongeur F, Raguenes G, Bindel D, Frisch N, Lakkis Z, Dupret D, Barbier G, Querellou J (2000) Cloning, expression, and characterization of DNA polymerase I from the hyperthermophilic archaea Thermococcus fumicolans. Extremophiles 4:215鈥?25PubMed
    Cann IK, Komori K, Toh H, Kanai S, Ishino Y (1998) A heterodimeric DNA polymerase: evidence that members of Euryarchaeota possess a distinct DNA polymerase. Proc Natl Acad Sci U S A 95:14250鈥?4255PubMed Central PubMed
    Carey MF, Peterson CL, Smale ST (2013) PCR-mediated site-directed mutagenesis. Cold Spring Harb Protoc 2013:738鈥?42PubMed
    Chen CY (2014) DNA polymerases drive DNA sequencing-by-synthesis technologies: both past and present. Front Microbiol 5:305PubMed Central PubMed
    Chen X, Liu W, Quinto I, Scala G (1997) High efficiency of site-directed mutagenesis mediated by a single PCR product. Nucleic Acids Res 25:682鈥?84PubMed Central PubMed
    Chien A, Edgar DB, Trela JM (1976) Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. J Bacteriol 127:1550鈥?557PubMed Central PubMed
    Cho SS, Kim KP, Lee KK, Youn MH, Kwon ST (2012) Characterization and PCR application of a new high-fidelity DNA polymerase from Thermococcus waiotapuensis. Enzym Microb Technol 51:334鈥?41
    Cho SS, Yu M, Kim SH, Kwon ST (2014) Enhanced PCR efficiency of high-fidelity DNA polymerase from Thermococcus waiotapuensis. Enzym Microb Technol 63:39鈥?5
    Cline J, Braman JC, Hogrefe HH (1996) PCR fidelity of pfu DNA polymerase and other thermostable DNA polymerases. Nucleic Acids Res 24:3546鈥?551PubMed Central PubMed
    Cubonova L, Richardson T, Burkhart BW, Kelman Z, Connolly BA, Reeve JN, Santangelo TJ (2013) Archaeal DNA polymerase D but not DNA polymerase B is required for genome replication in Thermococcus kodakarensis. J Bacteriol 195:2322鈥?328PubMed Central PubMed
    Dabrowski S, Kur J (1998) Cloning and expression in Escherichia coli of the recombinant his-tagged DNA polymerases from Pyrococcus furiosus and Pyrococcus woesei. Protein Expr Purif 14:131鈥?38PubMed
    Dietrich J, Schmitt P, Zieger M, Preve B, Rolland JL, Chaabihi H, Gueguen Y (2002) PCR performance of the highly thermostable proof-reading B-type DNA polymerase from Pyrococcus abyssi. FEMS Microbiol Lett 217:89鈥?4PubMed
    Dufour E, Mendez J, Lazaro JM, de Vega M, Blanco L, Salas M (2000) An aspartic acid residue in TPR-1, a specific region of protein-priming DNA polymerases, is required for the functional interaction with primer terminal protein. J Mol Biol 304:289鈥?00PubMed
    Elshawadfy AM, Keith BJ, Ee Ooi H, Kinsman T, Heslop P, Connolly BA (2014) DNA polymerase hybrids derived from the family-B enzymes of Pyrococcus furiosus and Thermococcus kodakarensis: improving performance in the polymerase chain reaction. Front Microbiol 5:224PubMed Central PubMed
    Emmanuel PJ (1993) Polymerase chain reaction from bench to bedside. Applications for infectious disease. J Fla Med Assoc 80:627鈥?30PubMed
    Eoff RL, Angel KC, Egli M, Guengerich FP (2007) Molecular basis of selectivity of nucleoside triphosphate incorporation opposite O6-benzylguanine by Sulfolobus solfataricus DNA polymerase Dpo4: steady-state and pre-steady-state kinetics and x-ray crystallography of correct and incorrect pairing. J Biol Chem 282:13573鈥?3584PubMed
    Erlich HA, Gelfand D, Sninsky JJ (1991) Recent advances in the polymerase chain reaction. Science 252:1643鈥?651PubMed
    Esteban JA, Salas M, Blanco L (1993) Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization. J Biol Chem 268:2719鈥?726PubMed
    Evans SJ, Fogg MJ, Mamone A, Davis M, Pearl LH, Connolly BA (2000) Improving dideoxynucleotide-triphosphate utilisation by the hyper-thermophilic DNA polymerase from the archaeon Pyrococcus furiosus. Nucleic Acids Res 28:1059鈥?066PubMed Central PubMed
    Firbank SJ, Wardle J, Heslop P, Lewis RJ, Connolly BA (2008) Uracil recognition in archaeal DNA polymerases captured by X-ray crystallography. J Mol Biol 381:529鈥?39PubMed
    Fogg MJ, Pearl LH, Connolly BA (2002) Structural basis for uracil recognition by archaeal family B DNA polymerases. Nat Struct Biol 9:922鈥?27PubMed
    Foldes-Papp Z, Angerer B, Ankenbauer W, Rigler R (2001a) Fluorescent high-density labeling of DNA: error-free substitution for a normal nucleotide. J Biotechnol 86:237鈥?53PubMed
    Foldes-Papp Z, Angerer B, Thyberg P, Hinz M, Wennmalm S, Ankenbauer W, Seliger H, Holmgren A, Rigler R (2001b) Fluorescently labeled model DNA sequences for exonucleolytic sequencing. J Biotechnol 86:203鈥?24PubMed
    Gardner AF, Jack WE (1999) Determinants of nucleotide sugar recognition in an archaeon DNA polymerase. Nucleic Acids Res 27:2545鈥?553PubMed Central PubMed
    Gardner AF, Jack WE (2002) Acyclic and dideoxy terminator preferences denote divergent sugar recognition by archaeon and Taq DNA polymerases. Nucleic Acids Res 30:605鈥?13PubMed Central PubMed
    Gardner AF, Kelman Z (2014) DNA polymerases in biotechnology. Front Microbiol 5:659PubMed Central PubMed
    Gardner AF, Joyce CM, Jack WE (2004) Comparative kinetics of nucleotide analog incorporation by Vent DNA polymerase. J Biol Chem 279:11834鈥?1842PubMed
    Garforth SJ, Domaoal RA, Lwatula C, Landau MJ, Meyer AJ, Anderson KS, Prasad VR (2010) K65R and K65A substitutions in HIV-1 reverse transcriptase enhance polymerase fidelity by decreasing both dNTP misinsertion and mispaired primer extension efficiencies. J Mol Biol 401:33鈥?4PubMed Central PubMed
    Gouge J, Ralec C, Henneke G, Delarue M (2012) Molecular recognition of canonical and deaminated bases by P. abyssi family B DNA polymerase. J Mol Biol 423:315鈥?36PubMed
    Griffiths K, Nayak S, Park K, Mandelman D, Modrell B, Lee J, Ng B, Gibbs MD, Bergquist PL (2007) New high fidelity polymerases from Thermococcus species. Protein Expr Purif 52:19鈥?0PubMed
    Guo L, Feng Y, Zhang Z, Yao H, Luo Y, Wang J, Huang L (2008) Biochemical and structural characterization of Cren7, a novel chromatin protein conserved among Crenarchaea. Nucleic Acids Res 36:1129鈥?137PubMed Central PubMed
    Haff LA, Smirnov IP (1997) Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res 7:378鈥?88PubMed Central PubMed
    Hashimoto H, Nishioka M, Fujiwara S, Takagi M, Imanaka T, Inoue T, Kai Y (2001) Crystal structure of DNA polymerase from hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. J Mol Biol 306:469鈥?77PubMed
    Henneke G, Flament D, Hubscher U, Querellou J, Raffin JP (2005) The hyperthermophilic euryarchaeota Pyrococcus abyssi likely requires the two DNA polymerases D and B for DNA replication. J Mol Biol 350:53鈥?4PubMed
    Hopfner KP, Eichinger A, Engh RA, Laue F, Ankenbauer W, Huber R, Angerer B (1999) Crystal structure of a thermostable type B DNA polymerase from Thermococcus gorgonarius. Proc Natl Acad Sci U S A 96:3600鈥?605PubMed Central PubMed
    Hutchison CA 3rd, Phillips S, Edgell MH, Gillam S, Jahnke P, Smith M (1978) Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551鈥?560PubMed
    Ichida JK, Horhota A, Zou K, McLaughlin LW, Szostak JW (2005) High fidelity TNA synthesis by Therminator polymerase. Nucleic Acids Res 33:5219鈥?225PubMed Central PubMed
    Ishino S, Ishino Y (2014) DNA polymerases as useful reagents for biotechnology - the history of developmental research in the field. Front Microbiol 5:465PubMed Central PubMed
    Ishino Y, Kawamura A, Ishino Y (2012) Application of PCNA to processive PCR by reducing the stability of its ring structure. J Jpn Soc Extremophiles 11:19鈥?5
    Ju J, Kim DH, Bi L, Meng Q, Bai X, Li Z, Li X, Marma MS, Shi S, Wu J, Edwards JR, Romu A, Turro NJ (2006) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators. Proc Natl Acad Sci U S A 103:19635鈥?9640PubMed Central PubMed
    Kawamura AIY, Ishino S (2012) Biophysical analysis of PCNA from Pyrococcus furiosus. J Jpn Soc Extremophiles 11:12鈥?8
    Ke SH, Madison EL (1997) Rapid and efficient site-directed mutagenesis by single-tube 鈥榤egaprimer鈥?PCR method. Nucleic Acids Res 25:3371鈥?372PubMed Central PubMed
    Killelea T, Ghosh S, Tan SS, Heslop P, Firbank SJ, Kool ET, Connolly BA (2010) Probing the interaction of archaeal DNA polymerases with deaminated bases using X-ray crystallography and non-hydrogen bonding isosteric base analogues. Biochemistry 49:5772鈥?781PubMed Central PubMed
    Killelea T, Ralec C, Bosse A, Henneke G (2014) PCR performance of a thermostable heterodimeric archaeal DNA polymerase. Front Microbiol 5:195PubMed Central PubMed
    Kim S, Labbe RG, Ryu S (2000) Inhibitory effects of collagen on the PCR for detection of Clostridium perfringens. Appl Environ Microbiol 66:1213鈥?215PubMed Central PubMed
    Kim YJ, Lee HS, Bae SS, Jeon JH, Lim JK, Cho Y, Nam KH, Kang SG, Kim SJ, Kwon ST, Lee JH (2007) Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J Microbiol Biotechnol 17:1090鈥?097PubMed
    Kim SW, Kim DU, Kim JK, Kang LW, Cho HS (2008) Crystal structure of Pfu, the high fidelity DNA polymerase from Pyrococcus furiosus. Int J Biol Macromol 42:356鈥?61PubMed
    Kim KP, Bae H, Kim IH, Kwon ST (2011a) Cloning, expression, and PCR application of DNA polymerase from the hyperthermophilic archaeon, Thermococcus celer. Biotechnol Lett 33:339鈥?46PubMed
    Kim KP, Cho SS, Lee KK, Youn MH, Kwon ST (2011b) Improved thermostability and PCR efficiency of Thermococcus celericrescens DNA polymerase via site-directed mutagenesis. J Biotechnol 155:156鈥?63PubMed
    Kunkel TA (1985) Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A 82:488鈥?92PubMed Central PubMed
    Kuroita T, Matsumura H, Yokota N, Kitabayashi M, Hashimoto H, Inoue T, Imanaka T, Kai Y (2005) Structural mechanism for coordination of proofreading and polymerase activities in archaeal DNA polymerases. J Mol Biol 351:291鈥?98PubMed
    Laos R, Thomson JM, Benner SA (2014) DNA polymerases engineered by directed evolution to incorporate non-standard nucleotides. Front Microbiol 5:565PubMed Central PubMed
    Lasken RS, Schuster DM, Rashtchian A (1996) Archaebacterial DNA polymerases tightly bind uracil-containing DNA. J Biol Chem 271:17692鈥?7696PubMed
    Leconte AM, Patel MP, Sass LE, McInerney P, Jarosz M, Kung L, Bowers JL, Buzby PR, Efcavitch JW, Romesberg FE (2010) Directed evolution of DNA polymerases for next-generation sequencing. Angew Chem Int Ed Engl 49:5921鈥?924PubMed Central PubMed
    Lee JI, Kim YJ, Bae H, Cho SS, Lee JH, Kwon ST (2010) Biochemical properties and PCR performance of a family B DNA polymerase from hyperthermophilic Euryarchaeon Thermococcus peptonophilus. Appl Biochem Biotechnol 160:1585鈥?599PubMed
    Li V, Hogg M, Reha-Krantz LJ (2010) Identification of a new motif in family B DNA polymerases by mutational analyses of the bacteriophage t4 DNA polymerase. J Mol Biol 400:295鈥?08PubMed Central PubMed
    Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91鈥?02PubMed
    Makarova KS, Krupovic M, Koonin EV (2014) Evolution of replicative DNA polymerases in archaea and their contributions to the eukaryotic replication machinery. Front Microbiol 5:354PubMed Central PubMed
    Mardis ER (2011) A decade鈥檚 perspective on DNA sequencing technology. Nature 470:198鈥?03PubMed
    Marsic D, Flaman JM, Ng JD (2008) New DNA polymerase from the hyperthermophilic marine archaeon Thermococcus thioreducens. Extremophiles 12:775鈥?88PubMed
    Matsui I, Urushibata Y, Shen Y, Matsui E, Yokoyama H (2011) Novel structure of an N-terminal domain that is crucial for the dimeric assembly and DNA-binding of an archaeal DNA polymerase D large subunit from Pyrococcus horikoshii. FEBS Lett 585:452鈥?58PubMed
    Mattila P, Korpela J, Tenkanen T, Pitkanen K (1991) Fidelity of DNA synthesis by the Thermococcus litoralis DNA polymerase--an extremely heat stable enzyme with proofreading activity. Nucleic Acids Res 19:4967鈥?973PubMed Central PubMed
    McCormick F (1989) The polymerase chain reaction and cancer diagnosis. Cancer Cells 1:56鈥?1PubMed
    McDonald JP, Hall A, Gasparutto D, Cadet J, Ballantyne J, Woodgate R (2006) Novel thermostable Y-family polymerases: applications for the PCR amplification of damaged or ancient DNAs. Nucleic Acids Res 34:1102鈥?111PubMed Central PubMed
    Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31鈥?6PubMed
    Motea EA, Berdis AJ (2010) Terminal deoxynucleotidyl transferase: the story of a misguided DNA polymerase. Biochim Biophys Acta 1804:1151鈥?166PubMed Central PubMed
    Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263鈥?73PubMed
    Ohmori H, Friedberg EC, Fuchs RP, Goodman MF, Hanaoka F, Hinkle D, Kunkel TA, Lawrence CW, Livneh Z, Nohmi T, Prakash L, Prakash S, Todo T, Walker GC, Wang Z, Woodgate R (2001) The Y-family of DNA polymerases. Mol Cell 8:7鈥?PubMed
    Pan M, Kelman LM, Kelman Z (2011) The archaeal PCNA proteins. Biochem Soc Trans 39:20鈥?4PubMed
    Pavlov AR, Belova GI, Kozyavkin SA, Slesarev AI (2002) Helix-hairpin-helix motifs confer salt resistance and processivity on chimeric DNA polymerases. Proc Natl Acad Sci U S A 99:13510鈥?3515PubMed Central PubMed
    Peng X, Basta T, Haring M, Garrett RA, Prangishvili D (2007) Genome of the Acidianus bottle-shaped virus and insights into the replication and packaging mechanisms. Virology 364:237鈥?43PubMed
    Ppyun H, Kim I, Cho SS, Seo KJ, Yoon K, Kwon ST (2012) Improved PCR performance using mutant Tpa-S DNA polymerases from the hyperthermophilic archaeon Thermococcus pacificus. J Biotechnol 164:363鈥?70PubMed
    Ramsay N, Jemth AS, Brown A, Crampton N, Dear P, Holliger P (2010) CyDNA: synthesis and replication of highly Cy-dye substituted DNA by an evolved polymerase. J Am Chem Soc 132:5096鈥?104PubMed Central PubMed
    Reeve MA, Fuller CW (1995) A novel thermostable polymerase for DNA sequencing. Nature 376:796鈥?97PubMed
    Reha-Krantz LJ, Nonay RL, Stocki S (1993) Bacteriophage T4 DNA polymerase mutations that confer sensitivity to the PPi analog phosphonoacetic acid. J Virol 67:60鈥?6PubMed Central PubMed
    Reha-Krantz LJ, Woodgate S, Goodman MF (2014) Engineering processive DNA polymerases with maximum benefit at minimum cost. Front Microbiol 5:380PubMed Central PubMed
    Rodriguez AC, Park HW, Mao C, Beese LS (2000) Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7. J Mol Biol 299:447鈥?62PubMed
    Rose EA (1991) Applications of the polymerase chain reaction to genome analysis. FASEB J 5:46鈥?4PubMed
    Sanger F, Coulson AR (1975) A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J Mol Biol 94:441鈥?48PubMed
    Sawano A, Miyawaki A (2000) Directed evolution of green fluorescent protein by a new versatile PCR strategy for site-directed and semi-random mutagenesis. Nucleic Acids Res 28:E78PubMed Central PubMed
    Shen Y, Musti K, Hiramoto M, Kikuchi H, Kawarabayashi Y, Matsui I (2001) Invariant Asp-1122 and Asp-1124 are essential residues for polymerization catalysis of family D DNA polymerase from Pyrococcus horikoshii. J Biol Chem 276:27376鈥?7383PubMed
    Shuttleworth G, Fogg MJ, Kurpiewski MR, Jen-Jacobson L, Connolly BA (2004) Recognition of the pro-mutagenic base uracil by family B DNA polymerases from archaea. J Mol Biol 337:621鈥?34PubMed
    Silvian LF, Toth EA, Pham P, Goodman MF, Ellenberger T (2001) Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat Struct Biol 8:984鈥?89PubMed
    Southworth MW, Kong H, Kucera RB, Ware J, Jannasch HW, Perler FB (1996) Cloning of thermostable DNA polymerases from hyperthermophilic marine Archaea with emphasis on Thermococcus sp. 9 degrees N-7 and mutations affecting 3鈥?5鈥?exonuclease activity. Proc Natl Acad Sci U S A 93:5281鈥?285PubMed Central PubMed
    Sun F, Huang L (2013) Sulfolobus chromatin proteins modulate strand displacement by DNA polymerase B1. Nucleic Acids Res 41:8182鈥?195PubMed Central PubMed
    Tabor S, Richardson CC (1995) A single residue in DNA polymerases of the Escherichia coli DNA polymerase I family is critical for distinguishing between deoxy- and dideoxyribonucleotides. Proc Natl Acad Sci U S A 92:6339鈥?343PubMed Central PubMed
    Takagi M, Nishioka M, Kakihara H, Kitabayashi M, Inoue H, Kawakami B, Oka M, Imanaka T (1997) Characterization of DNA polymerase from Pyrococcus sp. strain KOD1 and its application to PCR. Appl Environ Microbiol 63:4504鈥?510PubMed Central PubMed
    Terpe K (2013) Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 97:10243鈥?0254PubMed
    Timinskas K, Balvociute M, Timinskas A, Venclovas C (2014) Comprehensive analysis of DNA polymerase III alpha subunits and their homologs in bacterial genomes. Nucleic Acids Res 42:1393鈥?413PubMed Central PubMed
    Urban A, Neukirchen S, Jaeger KE (1997) A rapid and efficient method for site-directed mutagenesis using one-step overlap extension PCR. Nucleic Acids Res 25:2227鈥?228PubMed Central PubMed
    Wang J, Sattar AK, Wang CC, Karam JD, Konigsberg WH, Steitz TA (1997) Crystal structure of a pol alpha family replication DNA polymerase from bacteriophage RB69. Cell 89:1087鈥?099PubMed
    Wang Y, Prosen DE, Mei L, Sullivan JC, Finney M, Vander Horn PB (2004) A novel strategy to engineer DNA polymerases for enhanced processivity and improved performance in vitro. Nucleic Acids Res 32:1197鈥?207PubMed Central PubMed
    Wu W, Jia Z, Liu P, Xie Z, Wei Q (2005) A novel PCR strategy for high-efficiency, automated site-directed mutagenesis. Nucleic Acids Res 33:e110PubMed Central PubMed
    Wynne SA, Pinheiro VB, Holliger P, Leslie AG (2013) Structures of an apo and a binary complex of an evolved archeal B family DNA polymerase capable of synthesising highly cy-dye labelled DNA. PLoS One 8:e70892PubMed Central PubMed
    Wyss LA, Nilforoushan A, Eichenseher F, Suter U, Blatter N, Marx A, Sturla SJ (2015) Specific incorporation of an artificial nucleotide opposite a mutagenic DNA adduct by a DNA polymerase. J Am Chem Soc 137:30鈥?3PubMed
    Xia Y, Chu W, Qi Q, Xun L (2014) New insights into the QuikChange鈩?process guide the use of Phusion DNA polymerase for site-directed mutagenesis. Nucleic Acids Res 43:e12PubMed Central PubMed
    Xing X, Zhang L, Guo L, She Q, Huang L (2014) Sulfolobus replication factor C stimulates the activity of DNA polymerase B1. J Bacteriol 196:2367鈥?375PubMed Central PubMed
    Xu C, Maxwell BA, Brown JA, Zhang L, Suo Z (2009) Global conformational dynamics of a Y-family DNA polymerase during catalysis. PLoS Biol 7:e1000225PubMed Central PubMed
    Yamtich J, Sweasy JB (2010) DNA polymerase family X: function, structure, and cellular roles. Biochim Biophys Acta 1804:1136鈥?150PubMed Central PubMed
    Zhang L, Brown JA, Newmister SA, Suo Z (2009) Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2. Biochemistry 48:7492鈥?501PubMed
    Zhang L, Lou H, Guo L, Zhan Z, Duan Z, Guo X, Huang L (2010a) Accurate DNA synthesis by Sulfolobus solfataricus DNA polymerase B1 at high temperature. Extremophiles 14:107鈥?17PubMed
    Zhang Z, Gong Y, Guo L, Jiang T, Huang L (2010b) Structural insights into the interaction of the crenarchaeal chromatin protein Cren7 with DNA. Mol Microbiol 76:749鈥?59PubMed
    Zhang L, Radziwon A, Reha-Krantz LJ (2014) Targeted mutagenesis of a specific gene in yeast. Methods Mol Biol 1163:109鈥?29PubMed
    Zhou BL, Pata JD, Steitz TA (2001) Crystal structure of a DinB lesion bypass DNA polymerase catalytic fragment reveals a classic polymerase catalytic domain. Mol Cell 8:427鈥?37PubMed
    Zhu B (2014) Bacteriophage T7 DNA polymerase - sequenase. Front Microbiol 5:181PubMed Central PubMed
  • 作者单位:Likui Zhang (1)
    Manyu Kang (1)
    Jiajun Xu (1)
    Yanchao Huang (1)

    1. Marine Science & Technology Institute, Department of Environmental Science and Engineering, Yangzhou University, No. 196 Huayang West Road, Hanjiang District, Yangzhou City, 225127, Jiangsu Province, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
DNA polymerase (pol) is a ubiquitous enzyme that synthesizes DNA strands in all living cells. In vitro, DNA pol is used for DNA manipulation, including cloning, PCR, site-directed mutagenesis, sequencing, and several other applications. Family B archaeal DNA pols have been widely used for molecular biological methods. Biochemical and structural studies reveal that each archaeal DNA pol has different characteristics with respect to fidelity, processivity and thermostability. Due to their high fidelity and strong thermostability, family B archaeal DNA pols have the extensive application on high-fidelity PCR, DNA sequencing, and site-directed mutagenesis while family Y archaeal DNA pols have the potential for error-prone PCR and random mutagenesis because of their low fidelity and strong thermostability. This information combined with mutational analysis has been used to construct novel DNA pols with altered properties that enhance their use as biotechnological reagents. In this review, we focus on the development and use of family B archaeal DNA pols.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700