Thermodynamic behavior for generalized f(R) gravity with arbitrary coupling between matter and geometry
详细信息    查看全文
  • 作者:YaBo Wu (1)
    YueYue Zhao (1)
    JianBo Lu (1)
    Xin Zhang (1)
    HaiDan Tong (1)
    Hao Yang (1)
  • 关键词:f(R) gravity ; thermodynamics ; black hole ; FRW universe
  • 刊名:SCIENCE CHINA Physics, Mechanics & Astronomy
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:55
  • 期:12
  • 页码:2331-2337
  • 全文大小:325KB
  • 参考文献:1. Wald R M. The thermodynamics of black holes. Liv Rev Relat, 2001, 4: 6
    2. Wald R M. Gravitation, thermodynamics and quantum theory. Class Quantum Grav, 1999, 16: A177 CrossRef
    3. Bardeen J M, Carter B, Hawking S W. The four laws of black hole mechanics. Commun Math Phys, 1973, 31: 161-70 CrossRef
    4. Zhao R, Li H F, Zhang L C, et al. Radiation spectrum of a highdimensional rotating black hole. Sci China-Phys Mech Astron, 2010, 53(3): 504-07 CrossRef
    5. Yang J H, Fan J H. The central black hole masses for the gamma-ray loud blazars. Sci China-Phys Mech Astron, 2010, 53(10): 1921-927 CrossRef
    6. Wang T S, Li T P. Bifurcation timescales in power spectra of black hole binaries and ultraluminous X-ray sources. Sci China-Phys Mech Astron, 2010, 53(Suppl. 1): 177-82
    7. Gu M F, Chen Z Y. Synchrotron peak luminosity, black hole mass and Eddington ratio for SDSS flat-spectrum radio quasars. Sci China-Phys Mech Astron, 2010, 53(Suppl. 1): 202-06
    8. Xu D W, Komossa S. New insights into AGNs with low-mass black holes and high accretion rates: The case of narrow-line Seyfert 1 galaxies. Sci China-Phys Mech Astron, 2010, 53(Suppl. 1): 216-19
    9. Hawking S W. Particle creation by black holes. Commun Math Phys, 1975, 43: 199-20 CrossRef
    10. Bekenstein J D. Black holes and entropy. Phys Rev D, 1973, 7: 2333-346 CrossRef
    11. Jacobson T. Thermodynamics of spacetime: The Einstein equation of state. Phys Rev Lett, 1995, 75: 1260-263 CrossRef
    12. Paranjape A, Sarkar S, Padmanabhan T. Thermodynamic route to field equations in Lanczos-Lovelock gravity. Phys Rev D, 2006, 74: 104015 CrossRef
    13. Verlinde E. On the holographic principle in a radiation dominated universe. arXiv:0008140
    14. Cai R G, Kim S P. First law of thermodynamics and Friedmann equations of Friedmann-Robertson-Walker universe. J High Energy Phys, 2005, 02: 050 CrossRef
    15. Calcagni G. de Sitter thermodynamics and the braneworld. J High Energy Phys, 2005, 09: 060 CrossRef
    16. Wang P. Horizon entropy in modified gravity. Phys Rev D, 2005, 72: 024030 CrossRef
    17. Akbar M, Cai R G. Thermodynamic behavior of field equations for / f( / R) gravity. arXiv:0612089
    18. Akbar M, Cai R G. Thermodynamic behavior of field equations for / f( / R) gravity. Phys Lett B, 2007, 648: 243-48 CrossRef
    19. Akbar M, Cai R G. Thermodynamic behavior of the Friedmann equation at the apparent horizon of the FRW universe. Phys Rev D, 2007, 75: 084003 CrossRef
    20. Cai R G, Cao L M. Unified first law and the thermodynamics of the apparent horizon in the FRW universe. Phys Rev D, 2007, 75: 064008 CrossRef
    21. Cai R G. Thermodynamics of apparent horizon in Brane world scenarios. Prog Theor Phys Suppl, 2008, 172: 100-09 CrossRef
    22. Zhang J Y. Entropy correction of BTZ black holes in a tunneling framework. Sci China-Phys Mech Astron, 2010, 53(8): 1427-433 CrossRef
    23. Akbar M, Cai R G. Friedmann equations of FRW universe in scalartensor gravity, / f( / R) gravity and first law of thermodynamics. Phys Lett B, 2006, 635: 7-0 CrossRef
    24. Zhai Z X, Liu W B. Constraints of / f( / R) gravity in Palatini approach with observational Hubble data. Sci China-Phys Mech Astron, 2011, 54(8): 1378-383 CrossRef
    25. Eling C, Guedens R, Jacobson T. Nonequilibrium thermodynamics of spacetime. Phys Rev Lett, 2006, 96: 121301 CrossRef
    26. Harko T. Modified gravity with arbitrary coupling between matter and geometry. Phys Lett B, 2008, 669: 376-79 CrossRef
    27. Wang J, Wu Y B, Guo Y X, et al. Energy conditions and stability in generalized / f( / R) gravity with arbitrary coupling between matter and geometry. Phys Lett B, 2010, 689: 133-38 CrossRef
    28. Wang J, Wu Y B, Guo Y X, et al. Conditions and instability in / f( / R) gravity with non-minimal coupling between matter and geometry. Eur Phys J C, 2010, 69: 541-46 CrossRef
    29. Hayward S A. Unified first law of black-hole dynamics and relativistic thermodynamics. Class Quantum Grav, 1998, 15: 3147-162 CrossRef
    30. Hayward S A, Mukohyana S, Ashworth M C. Dynamic black-hole entropy. Phys Lett A, 1999, 256: 347-50 CrossRef
    31. Bertolami O, Boehmer C G, Harko T, et al. Extra force in / f( / R) modified theories of gravity. Phys Rev D, 2007, 75: 104016 CrossRef
    32. Padmanabhan T. Classical and quantum thermodynamics of horizons in spherically symmetric spacetimes. Class Quantum Grav, 2002, 19: 5387-408 CrossRef
    33. Padmanabhan T. Gravity and the thermodynamics of horizons. Phys Rep, 2005, 406: 49-25 CrossRef
    34. Padmanabhan T. Gravity: A new holographic perspective. Int J Mod Phys D, 2006, 15: 1659-676 CrossRef
    35. Wald R M. Black hole entropy is the Noether charge. Phys Rev D, 1993, 48: 3427-431 CrossRef
    36. Cognola G, Elizalde E, Nojiri S, et al. One-loop / f( / R) gravity in de Sitter universe. J Cosmol Astropart Phys, 2005, 0502: 010 CrossRef
    37. Brevik I, Nojiri S, Odintsov S D, et al. Entropy and universality of the Cardy-Verlinde formula in a dark energy universe. Phys Rev D, 2004, 70: 043520 CrossRef
  • 作者单位:YaBo Wu (1)
    YueYue Zhao (1)
    JianBo Lu (1)
    Xin Zhang (1)
    HaiDan Tong (1)
    Hao Yang (1)

    1. Department of Physics, Liaoning Normal University, Dalian, 116029, China
  • ISSN:1869-1927
文摘
The thermodynamic behavior of field equations for the generalized f(R) gravity with arbitrary coupling between matter and geometry is studied in the two kinds of spacetime, i.e., the both spatially homogenous, isotropic FRW universe and static, spherically symmetric black hole spacetime. The field equations of the generalized f(R) gravity with arbitrary coupling between matter and geometry can be cast to the form of the first law of thermodynamics with the reputed entropy production terms d $\bar S$ , which are quite general and can degenerate to the cases of Einstein’s general relativity and pure f(R) gravity with non-coupling and nonminimal coupling as special cases. The appearance of the entropy production term d $\bar S$ illustrates that the horizon thermodynamics is non-equilibrium one for the generalized f(R) gravity with arbitrary coupling between matter and geometry.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700