Development and validation of an evaporation duct model. Part I: Model establishment and sensitivity experiments
详细信息    查看全文
  • 作者:Juli Ding ; Jianfang Fei ; Xiaogang Huang …
  • 关键词:evaporation duct ; flux ; profile relationship ; stability function ; velocity roughness length ; scalar roughness length
  • 刊名:Journal of Meteorological Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:29
  • 期:3
  • 页码:467-481
  • 全文大小:1,453 KB
  • 参考文献:Babin, S. M., G. S. Young, and J. A. Carton, 1997: A new model of the oceanic evaporation duct. J. Appl. Meteor., 36, 193-04.CrossRef
    Babin, S. M., and G. D. Dockery, 2002: LKB-based evaporation duct model comparison with buoy data. J. Appl. Meteor., 41, 434-46.CrossRef
    Beljaars, A. C. M., and A. A. M. Holtslag, 1991: Flux parameterization over land surfaces for atmospheric models. J. Appl. Meteor., 30, 327-41.CrossRef
    Brutsaert, W., 1975: A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. Water Resour. Res., 11, 543-50.CrossRef
    Burk, S. D., T. Haack, L. T. Rogers, et al., 2003: Island wake dynamics and wake influence on the evaporation duct and radar propagation. J. Appl. Meteor., 42, 349-67.CrossRef
    Businger, J. A., J. C. Wyngaard, Y. Izumi, et al., 1971: Flux profile relationships in the atmospheric surface layer. J. Atmos. Sci., 28, 181-89.CrossRef
    Cheng, Y. G., and W. Brutsaert, 2005: Flux-profile relationships for wind speed and temperature in the stable atmospheric boundary layer. Bound.-Layer Meteor., 114, 519-38.CrossRef
    Cook, J., 1991: A sensitivity study of weather data inaccuracies on evaporation duct height algorithms. Radio Sci., 26, 731-46.CrossRef
    Dai Fushan, 1998: The refractivity models in the marine atmospheric surface layer and their applications in the evaporation duct analysis. Chinese J. Radio Sci., 13, 103-18. (in Chinese)
    Dai Fushan, 2013: Modeling turbulence effects on radar wave propagation over sea. Chinese J. Radio Sci., 28, 80-6. (in Chinese)
    Dai Fushan, Li Qun, Dong Shuanglin, et al., 2002: Atmospheric Duct and Its Application in Military. PLA Press of China, Beijing, 112-43. (in Chinese)
    Ding Juli, Jianfang Fei, Xiaogang Huang, et al., 2011: Improvement to the evaporation duct model by introducing nonlinear similarity functions in stable conditions. J. Trop. Meteor., 27, 410-16.
    Dyer, A. J., 1974: A review of flux-profile relationships. Bound.-Layer Meteor., 7, 363-72.CrossRef
    Edson, J. B., C. J. Zappa, J. A. Ware, et al., 2004: Scalar flux profile relationships over the open ocean. J. Geophys. Res., 109, C08S09, doi: 10.1029/2003JC001960.
    Fairall, C. W., E. F. Bradley, D. P. Rogers, et al., 1996: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment. J. Geophys. Res., 101, 3747-764.CrossRef
    Fairall, C. W., E. F. Bradley, J. E. Hare, et al., 2003: Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. J. Climate, 16, 571-92.CrossRef
    Frederickson, P. A., K. L. Davidson, C. R. Zeisse, et al., 2000: Estimating the refractive index structure parameter over the ocean using bulk methods. J. Appl. Meteor., 39, 1770-783.CrossRef
    Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.
    Gehman, J. Z., 2000: Importance of evaporation duct stability in propagation-sensitive studies. JHU/APL (Applied Physics Laboratory, Johns Hopkins University) Technical Report, A2A-00-U-3-008, 8 pp.
    Gerstoft, P., L. T. Rogers, J. L. Krolik, et al., 2003: Inversion for refractivity parameters from radar sea clutter. Radio Sci., 38, 8053, doi: 10.1029/2002RS002640.CrossRef
    Grachev, A. A., C. W. Fairall, and E. F. Bradley, 2000: Convective profile constants revisited. Bound.-Layer Meteor., 94, 495-15.CrossRef
    Grachev, A. A., E. L. Andreas, and C. W. Fairall, 2007: SHEBA flux-profile relationships in the stable atmospheric boundary layer. Bound.-Layer Meteor., 124, 315-33.CrossRef
    Hu Yinqiao and Zhang Qiang, 1992: Local similarity in the atmosphere boundary layer. Chinese J. Atmos. Sci., 17, 10-0. (in Chinese)
    Jeske, H., 1973: State and limits of prediction methods of radar wave propagation conditions over the sea. Modern Topics in Microwave Propagation and Air-Sea Interaction, A. Zancla, Ed., D. Reidel Publishing, 130-48.CrossRef
    Jiao Lin and Zhang Yonggang, 2009: An evaporation duct prediction model coupled with the MM5. Acta Meteor. Sinica, 67, 382-87. (in Chinese)
    Katzin, M., R. W. Bauchman, and W. Binnian, 1947: 3- and 9-centimeter propagation in low ocean ducts. Proceedings of the IRE, 35, 891-05.CrossRef
    Li Yunbo, Zhang Yonggang, Tang Haichuan, et al., 2009: Oceanic evaporation duct diagnosis model based on air-sea flux algorithm. J. Appl. Meteor. Sci., 20, 628-33. (in Chinese)
    Liu Chengguo, Huang Jiying, Jiang Changyin, et al., 2001: Modeling evaporation duct over sea with pseudo-refractivity and similarity theory. Acta Electronica Sinica, 29, 970-72. (in Chinese)
    Liu, W. T., K. B. Katsaros, and J. A. Businger, 1979: Bulk parameterization of the air-sea exchanges of heat and water vapor including the molecular constraints at the interface. J. Atmos. Sci., 36, 1722-735.CrossRef
    Liu, W. T., and T. V. Blanc, 1984: The Liu, Katsaros and Businger (1979) Bulk Atmospheric Flux Computational Iterati
  • 作者单位:Juli Ding (1)
    Jianfang Fei (1)
    Xiaogang Huang (1)
    Xiaoping Cheng (1)
    Xiaohua Hu (2)
    Liang Ji (3)

    1. Institute of Meteorology and Oceanography, PLA University of Science and Technology, Nanjing, 211101, China
    2. Mailbox 5111, Beijing, 100081, China
    3. Institute of Philosophy, PLA University of Science and Technology, Nanjing, 211101, China
  • 刊物类别:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air
  • 刊物主题:Atmospheric Sciences; Meteorology; Geophysics and Environmental Physics; Atmospheric Protection/Air Quality Control/Air Pollution;
  • 出版者:The Chinese Meteorological Society
  • ISSN:2198-0934
文摘
Based on the Coupled Ocean-Atmospheric Response Experiment (COARE) bulk algorithm and the Naval Postgraduate School (NPS) model, a universal evaporation duct (UED) model that can flexibly accommodate the latest improvements in component (such as stability function, velocity roughness, and scalar roughness) schemes for different stratification and wind conditions, is proposed in this paper. With the UED model, the sensitivity of the model-derived evaporation duct height (EDH) to stability function (ψ), ocean wave effect under moderate to high wind speeds, and scalar roughness length parameterization, is investigated, and relative contributions of these factors are compared. The results show that the stability function is a key factor influencing the simulated EDH values. Under unstable conditions, the EDH values from stability functions of Fairall et al. (1996) and Hu and Zhang (1992) are generally higher than those from others; while under stable conditions, unreasonably high EDHs can be avoided by use of the stability functions of Hu and Zhang (1992) and Grachev et al. (2007). Under moderate to high wind speeds, the increase in velocity roughness length z 0 due to consideration of the true ocean wave effect acts to reduce modeled EDH values; this trend is more pronounced under stable conditions. Although the scalar roughness length parameterization has a minor effect on the model-derived EDH, a positive correlation is found between the scalar roughness length z 0q and the model-derived EDH. Key words evaporation duct flux-profile relationship stability function velocity roughness length scalar roughness length

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700