Dislocated Double-Layered Metal Gratings: Refractive Index Sensors with High Figure of Merit
详细信息    查看全文
  • 作者:Yang Shen ; Tianran Liu ; Qiangzhong Zhu ; Jianfang Wang ; Chongjun Jin
  • 关键词:Localized surface plasmon resonance ; Refractive index sensing ; Figure of merit ; Wood’s anomaly ; Fano resonance
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:10
  • 期:6
  • 页码:1489-1497
  • 全文大小:4,126 KB
  • 参考文献:1.Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York
    2.Brolo AG (2012) Nat Photonics 6:709CrossRef
    3.Liu N, Tang ML, Hentschel M, Giessen H, Alivisatos AP (2011) Nat Mater 10:631-36CrossRef
    4.Yao JM, Le AP, Gray SK, Moore JS, Rogers JA, Nuzzo RG (2010) Adv Mater 22:1102CrossRef
    5.Lal S, Link S, Halas NJ (2007) Nat Photonics 1:641CrossRef
    6.Lee KL, Chih MJ, Shi X, Ueno K, Misawa H, Wei PK (2012) Adv Mater 24:OP253
    7.Kumar M, Sandeep CSS, Kumar G, Mishra YK, Philip R, Reddy GB (2014) Plasmonics 9:129CrossRef
    8.Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Nature 461:629CrossRef
    9.Tiwari V, Khokar MK, Tiwari M, Barala S, Kumar M (2014) J Nanomed Nanotechnol 5:246CrossRef
    10.Kim S, Jin JH, Kim YJ, Park IY, Kim Y, Kim SW (2008) Nature 453:757CrossRef
    11.Gan QQ, Bartoli FJ, Kafafi ZH (2013) Adv Mater 25:2385CrossRef
    12.Homola J, Yee SS, Gauglitz G (1999) Sens Actuators B 54:3CrossRef
    13.Mayer KM, Hafner JH (2011) Chem Rev 111:3828CrossRef
    14.Dmitriev A, Hagglund C, Chen S, Fredriksson H, Pakizeh T, Kall M, Sutherland DS (2008) Nano Lett 8:3893CrossRef
    15.Verellen N, Van Dorpe P, Huang CJ, Lodewijks K, Vandenbosch GAE, Lagae L, Moshchalkov VV (2011) Nano Lett 11:391CrossRef
    16.Brian B, Sepulveda B, Alaverdyan Y, Lechuga LM, Kall M (2009) Opt Express 17:2015CrossRef
    17.Jeppesen C, Xiao S, Mortensen NA, Kristensen A (2010) Opt Express 18:25075CrossRef
    18.Lee SH, Johnson TW, Lindquist NC, Im H, Norris DJ, Oh SH (2012) Adv Funct Mater 22:4439CrossRef
    19.Cattoni A, Ghenuche P, Haghiri-Gosnet AM, Decanini D, Chen J, Pelouard JL, Collin S (2011) Nano Lett 11:3557CrossRef
    20.Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV (2009) Nat Mater 8:867CrossRef
    21.Shen Y, Zhou JH, Liu TR, Tao YT, Jiang RB, Liu MX, Xiao GH, Zhu JH, Zhou ZK, Wang XH, Jin CJ, Wang JF (2013) Nat Commun 4:2381
    22.Otte MA, Estevez MC, Regatos D, Lechuga LM, Sepulveda B (2011) ACS Nano 5:9179CrossRef
    23.Bendana XM, Lozano G, Pirruccio G, Rivas JG, de Abajo FJG (2013) Opt Express 21:5636CrossRef
    24.Stewart ME, Mack NH, Malyarchuk V, Soares JANT, Lee TW, Gray SK, Nuzzo RG, Rogers JA (2006) Proc Natl Acad Sci U S A 103:17143CrossRef
    25.Li WD, Ding F, Hu J, Chou SY (2011) Opt Express 19:3925CrossRef
    26.Zhou W, Odom TW (2011) Nat Nanotechnol 6:423CrossRef
    27.Kravets VG, Schedin F, Grigorenko AN (2008) Phys Rev Lett 101:087403CrossRef
    28.Nikitin AG, Kabashin AV, Dallaporta H (2012) Opt Express 20:27941CrossRef
    29.Burokur SN, Sellier A, Kante B, de Lustrac A (2009) Appl Phys Lett 94:201111CrossRef
    30.Christ A, Martin OJF, Ekinci Y, Gippius NA, Tikhodeev SG (2008) Nano Lett 8:2171CrossRef
    31.Taubert R, Ameling R, Weiss T, Christ A, Giessen H (2011) Nano Lett 11:4421CrossRef
    32.Chan HB, Marcet Z, Woo K, Tanner DB, Carr DW, Bower JE, Cirelli RA, Ferry E, Klemens F, Miner J, Pai CS, Taylor JA (2006) Opt Lett 31:516CrossRef
    33.Marcet Z, Paster JW, Carr DW, Bower JE, Cirelli RA, Klemens F, Mansfield WM, Miner JF, Pai CS, Chan HB (2008) Opt Lett 33:1410CrossRef
    34.Liu TR, Shen Y, Shin W, Zhu QZ, Fan SH, Jin CJ (2014) Nano Lett 14:3848CrossRef
    35.Lassiter JB, Sobhani H, Fan JA, Kundu J, Capasso F, Nordlander P, Halas NJ (2010) Nano Lett 10:3184CrossRef
    36.Kubo W, Fujikawa S (2011) Nano Lett 11:8CrossRef
    37.Zhao J, Zhang CJ, Braun PV, Giessen H (2012) Adv Mater 24:OP247CrossRef
    38.Liu SD, Yang Z, Liu RP, Li XY (2011) J Phys Chem C 115:24469CrossRef
    39.Barnes WL, Murray WA, Dintinger J, Devaux E, Ebbesen TW (2004) Phys Rev Lett 92:107401CrossRef
    40.Ghaemi HF, Thio T, Grupp DE, Ebbesen TW, Lezec HJ (1998) Phys Rev B 58:6779CrossRef
    41.Gao H, McMahon JM, Lee MH, Henzie J, Gray SK, Schatz GC, Odom TW (2009) Opt Express 17:2334CrossRef
    42.Schmid JH, Cheben P, Janz S, Lapointe J, Post E, Xu DX (2007) Opt Lett 32:1794CrossRef
    43.Hoyt LF (1934) Ind Eng Chem 26:329CrossRef
    44.Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Nano Lett 10:2342CrossRef
    45.Schmidt MA, Lei DY, Wondraczek L, Nazabal V, Maier SA (2012) Nat Commun 3:1108CrossRef
    46.Pryce IM, Kelaita YA, Aydin K, Atwater HA (2011) ACS Nano 5:8167CrossRef
    47.Paivanranta B, Merbold H, Giannini R, Buchi L, Gorelick S, David C, Loffler JF, Feurer T, Ekinci Y (2011) ACS Nano 5:6374CrossRef
    48.Offermans P, Schaafsma MC, Rodriguez SRK, Zhang YC, Crego-Calama M, Brongersma SH, Rivas JG (2011) ACS Nano 5:5151CrossRef
  • 作者单位:Yang Shen (1)
    Tianran Liu (1)
    Qiangzhong Zhu (1)
    Jianfang Wang (2)
    Chongjun Jin (1)

    1. State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
    2. Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong, SAR, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We experimentally demonstrate an enhanced refractive index sensing using a dislocated double-layered metal grating (DDMG). The DDMG is capable of supporting a novel guided mode caused by the interaction between localized surface plasmon resonances (LSPRs) from the individual gold stripes and Wood’s anomaly in the dielectric grating layer between two gold gratings. We show that this guided mode can only be induced and mediated by the coupling of lattice plasmon resonances sustained by upper and lower gold grating through introducing a lateral displacement between the two gold gratings. The DDMG provides an experimental figure of merit (FOM) value up to 36 under normal incidence, which is superior to those of most of nanoplasmonic sensors relying on Fano resonances. Additionally, the DDMGs can be fabricated by a very simple and cost-effective method via a combination of two-beam interference lithography and metal deposition. Accompanied with high FOM and simple detection scheme, this sensor will be found in a wide range of applications in biomedical sensing. Keywords Localized surface plasmon resonance Refractive index sensing Figure of merit Wood’s anomaly Fano resonance

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700