Colorimetric determination of aluminum(III) based on the aggregation of Schiff base-functionalized gold nanoparticles
详细信息    查看全文
  • 作者:Pengcheng Huang ; Jianfang Li ; Xin Liu ; Fangying Wu
  • 关键词:Spectrophotometry ; Photometric assay ; Visual detection ; Transmission electron microscopy ; FTIR ; Self assembly
  • 刊名:Microchimica Acta
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:183
  • 期:2
  • 页码:863-869
  • 全文大小:1,726 KB
  • 参考文献:1.Kepp KP (2012) Bioinorganic chemistry of Alzheimer’s disease. Chem Rev 112:5193–5239CrossRef
    2.Mendez-Aèlvarez E, Soto-Otero R, Hermida-Ameijeiras A, Lopez-Real AM, Labandeira-Garc JL (2001) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. Biochim Biophys Acta 1586:155–168CrossRef
    3.Wills MR, Savory J (1983) Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet 2:29–34CrossRef
    4.Krejpcio Z, Wójciak RW (2002) The influence of Al3+ ions on pepsin and trypsin activity in vitro. Pol J Environ Stud 11:251–254
    5.Frankowski M, Zioła-Frankowska A, Siepak J (2010) New method for speciation analysis of aluminium fluoride complexes by HPLC–FAAS hyphenated technique. Talanta 80:2120–2126CrossRef
    6.Chen B, Zeng Y, Hu B (2010) Study on speciation of aluminum in human serum using zwitterionic bile acid derivative dynamically coated C18 column HPLC separation with UV and on-line ICP-MS detection. Talanta 81:180–186CrossRef
    7.Wang H, Yu Z, Wang Z, Hao H, Chen Y, Wan P (2011) Preparation of a preplated bismuth film on Pt electrode and its application for determination of trace aluminum(III) by adsorptive stripping voltammetry. Electroanalysis 23:1095–1099CrossRef
    8.Arduini M, Felluga F, Mancin F, Rossi P, Tecilla P, Tonellato U, Valentinuzzi N (2003) Aluminium fluorescence detection with a FRET amplified chemosensor. Chem Commun 13:1606–1607CrossRef
    9.Maity D, Govindaraju T (2010) Pyrrolidine constrained bipyridyl-dansyl click fluoroionophore as selective Al3+ sensor. Chem Commun 46:4499–4501CrossRef
    10.Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam SW, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg Chem 51:3597–3602CrossRef
    11.Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081CrossRef
    12.Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252CrossRef
    13.Lee JS, Ulmann PA, Han MS, Mirkin CA (2008) A DNA–gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 8:529–533CrossRef
    14.Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112:2739–2779CrossRef
    15.Sung YM, Wu SP (2014) Colorimetric detection of Cd(II) ions based on di-(1H-pyrrol-2-yl) methanethione functionalized gold nanoparticles. Sensors Actuators B 201:86–91CrossRef
    16.Chai F, Wang CG, Wang TT, Li L, Su ZM (2010) Colorimetric detection of Pb2+ using glutathione functionalized gold nanoparticles. ACS Appl Mater Interfaces 2:1466–1470CrossRef
    17.Chen GH, Chen WY, Yen YC, Wang CW, Chang HT, Chen CF (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849CrossRef
    18.Mehta VN, Kumar MA, Kailasa SK (2013) Colorimetric detection of copper in water samples using dopamine dithiocarbamate-functionalized Au nanoparticles. Ind Eng Chem Res 52:4414–4420CrossRef
    19.Lee YF, Nan FH, Chen MJ, Wu HY, Ho CW, Chen YY, Huang CC (2012) Detection and removal of mercury and lead ions by using gold nanoparticle-based gel membrane. Anal Methods 4:1709–1717CrossRef
    20.Liu R, Chen ZP, Wang SS, Qu CL, Chen LX, Wang Z (2013) Colorimetric sensing of copper(II) based on catalytic etching of gold nanoparticles. Talanta 112:37–42CrossRef
    21.Guo Y, Wang Z, Qu W, Shao H, Jiang X (2011) Colorimetric detection of mercury, lead and copper ions simultaneously using protein-functionalized gold nanoparticles. Biosens Bioelectron 26:4064–4069CrossRef
    22.Li XK, Wang J, Sun LL, Wang ZX (2010) Gold nanoparticle-based colorimetric assay for selective detection of aluminium cation on living cellular surfaces. Chem Commun 46:988–990CrossRef
    23.Zhang M, Liu YQ, Ye BC (2012) Mononucleotide-modified metal nanoparticles: an efficient colorimetric probe for selective and sensitive detection of aluminum(III) on living cellular surface. Chem Eur J 18:2507–2513CrossRef
    24.Chang YJ, Hung PJ, Wan CF, Wu AT (2014) A highly selective fluorescence turn-on and reversible sensor for Al3+ ion. Inorg Chem Commun 39:122–125CrossRef
    25.Liu X, Lin Q, Wei TB, Zhang YM (2014) A highly selective colorimetric chemosensor for detection of nickel ions in aqueous solution. New J Chem 38:1418–1423CrossRef
    26.Frens G (1973) Controlled nucleation for the regulation of particle size in monodisperse gold suspensions. Nature 241:20–22
    27.Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 75:1215–1217CrossRef
    28.Brewer SH, Glomm WR, Johnson MC, Knag MK, Franzen S (2005) Probing BSA binding to citrate-coated gold nanoparticles and surface. Langmuir 21:9303–9307CrossRef
    29.Guidelines for Drinking Water Quality (2004) World Health Organization, three edn. Geneva, 397, pp 301–311
    30.Chen S, Fang YM, Xiao Q, Li J, Li SB, Chen HJ, Sun JJ, Yang HH (2012) Rapid visual detection of aluminium ion using citrate capped gold nanoparticles. Analyst 137:2021–2023CrossRef
    31.Xue DS, Wang HY, Zhang YB (2014) Specific and sensitive colorimetric detection of Al3+ using 5-mercaptomethyltetrazole capped gold nanoparticles in aqueous solution. Talanta 119:306–311CrossRef
    32.Yang NN, Gao YX, Zhang YJ, Shen ZY, Wu AG (2014) A new rapid colorimetric detection method of Al3+ with high sensitivity and excellent selectivity based on a new mechanism of aggregation of smaller etched silver nanoparticles. Talanta 122:272–277CrossRef
    33.Mu XY, Qi L, Qiao J, Ma HM (2014) One-pot synthesis of tyrosine-stabilized fluorescent gold nanoclusters and their application as turn-on sensors for Al3+ ions and turn-off sensors for Fe3+ ions. Anal Methods 6:6445–6451CrossRef
    34.Zhou TY, Lin LP, Rong MC, Jiang YQ, Chen X (2013) Silver–gold alloy nanoclusters as a fluorescence-enhanced probe for aluminum ion sensing. Anal Chem 85:9839–9844CrossRef
    35.Zou Y, Yan FY, Dai LF, Luo YM, Fu Y, Yang N, Wun JY, Chen L (2014) High photoluminescent carbon nanodots and quercetin-Al3+ construct a ratiometric fluorescent sensing system. Carbon 77:1148–1156CrossRef
  • 作者单位:Pengcheng Huang (1)
    Jianfang Li (1)
    Xin Liu (1)
    Fangying Wu (1)

    1. College of Chemistry, Nanchang University, Nanchang, 330031, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
The authors describe a colorimetric method for the determination of Al(III) using surface modified gold nanoparticles (AuNPs). Citrate capped AuNPs were functionalized, by self-assembly, with the Schiff base obtained from 2-hydroxy-1-naphthaldehyde and 2-aminoethanethiol. The modified AuNPs were characterized by transmission electron microscopy and FTIR. Complexation of Al(III) ions by the Schiff base on the AuNPs results in self-aggregation of the AuNPs which is accompanied by a color change from red to blue which can be monitored visually or by UV–vis spectroscopy. Absorbance varies linearly with the Al(III) concentration in the range from 9 to 23 μM, and the lower detection limit is 0.29 μM (at 3 So/k). The method was applied to the determination of Al(III) in (spiked) samples of boiler water and urine.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700