Fast preparation of Na0.44MnO2 nanorods via a high NaOH concentration hydrothermal soft chemical reaction and their lithium storage properties
详细信息    查看全文
  • 作者:Cai Liu ; Jiangang Li ; Pengxiang Zhao ; Wenli Guo
  • 关键词:Na0.44MnO2 ; Nanorods ; Cathode ; Hydrothermal Soft Chemical Process ; Lithium ; ion batteries ; Energy storage
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:17
  • 期:3
  • 全文大小:1,367 KB
  • 参考文献:1. Cao, Y, Xiao, L, Wang, W, Choi, D, Nie, Z, Yu, J, Saraf, LV, Yang, Z, Liu, J (2011) Reversible sodium ion insertion in single crystalline manganese oxide nanowires with long cycle life. Adv Mater 23: pp. 3155-3160 CrossRef
    2. Chen, L, Gu, Q, Zhou, X, Lee, S, Xia, Y, Liu, Z (2013) New-concept batteries based on aqueous Li+/Na+ mixed-ion electrolytes. Scientific Reports 3: pp. 1946
    3. Doeff, MM, Peng, MY, Ma, Y, Jonghe, LC (1994) Orthorhombic NaxMnO2 as a cathode material for secondary sodium and lithium polymer batteries. J Electrochem Soc 141: pp. L145-L147 CrossRef
    4. Doeff, MM, Richardson, TJ, Kepley, L (1996) Lithium insertion processes of orthorhombic NaxMnO2-based electrode materials. J Electrochem Soc 143: pp. 2507-2516 CrossRef
    5. Doeff, MM, Richardson, TJ, Hollingsworth, J, Yuan, C-W, Gonzales, M (2002) Synthesis and characterization of a copper-substituted manganese oxide with the Na0.44MnO2 structure. J Power Sources 112: pp. 294-297 CrossRef
    6. Feng, Q, Yanagisawa, K, Yamasaki, N (1996) Transformation of manganese oxides from layered structures to tunnel structures. Chem Commun 14: pp. 1607-1608 CrossRef
    7. Hibino, M, Kawaoka, H, Zhou, H, Honma, I (2004) Rapid discharge performance of composite electrode of hydrated sodium manganese oxide and acetylene black. Electrochim Acta 49: pp. 5209-5216 CrossRef
    8. Hosono, E, Matsuda, H, Honma, I, Fujihara, S, Ichihara, M, Zhou, H (2008) Synthesis of single crystalline electro-conductive Na0.44MnO2 nanowires with high aspect ratio for the fast charge–discharge Li ion battery. J Power Sources 182: pp. 349-352 CrossRef
    9. Hosono, E, Matsuda, H, Saito, T, Kudo, T, Ichihara, M, Honma, I, Zhou, H (2010) Synthesis of single crystalline Li0.44MnO2 nanowires with large specific capacity and good high current density property for a positive electrode of li ion battery. J Power Sources 195: pp. 7098-7101 CrossRef
    10. Hosono, E, Saito, T, Hoshino, J, Okubo, M, Saito, Y, Nishio-Hamane, D, Kudo, T, Zhou, H (2012) High power Na-ion rechargeable battery with single-crystalline Na0.44MnO2 nanowire electrode. J Power Sources 217: pp. 43-46 CrossRef
    11. Katz, MJ, Clarke, RC, Nye, WF (1956) Available oxygen in manganese dioxide. Anal Chem 28: pp. 507-508 CrossRef
    12. Lanson, B, Drits, VA, Feng, Q, Manceau, A (2002) Structure of synthetic Na-birnessite: evidence for a triclinic one-layer unit cell. Am Mineral 87: pp. 1662-1671
    13. Goff, P, Baffier, N, Bach, S, Pereira-Ramos, JP (1996) Synthesis, ion exchange and electrochemical properties of lamellar phyllomanganates of the birnessite group. Mater Res Bull 31: pp. 63-75 CrossRef
    14. Lee, J-H, Black, R, Popov, G, Pomerantseva, E, Nan, F, Botton, GA, Nazar, LF (2012) The role of vacancies and defects in Na0.44MnO2 nanowire catalysts for lithium–oxygen batteries. Energy Environ Sci 5: pp. 9558-9565 CrossRef
    15. Li, Y, Wu, Y (2010) Formation of Na0.44MnO2 nanowires via stress-induced splitting of birnessite nanosheets. Nano Research 2: pp. 54-60 CrossRef
    16. Pan, H, Hu, Y-S, Chen, L (2013) Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ Sci 6: pp. 2338 CrossRef
    17. Ruffo, R, Fathi, R, Kim, DJ, Jung, YH, Mari, CM, Kim, DK (2013) Imped
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
This paper describes a high NaOH concentration hydrothermal soft chemical reaction to prepare Na0.44MnO2 nanorods. In this process, Na-birnessite precursors and concentrated NaOH solution are introduced into the hydrothermal reaction. As a result, the hydrothermal time can be significantly shortened from 96 to 24?h, the hydrothermal temperature can be reduced from 205 to 180?°C and the yield of Na0.44MnO2 can be increased from about 0.6 to about 2.4?g/(mL.day), respectively. Furthermore, the obtained Na0.44MnO2 nanorods with one-dimensional tunnel structures exhibit favorable electrochemical lithium storage properties, which make them promising for the cathode materials of lithium-ion batteries.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700