Resveratrol protects against arsenic trioxide-induced nephrotoxicity by facilitating arsenic metabolism and decreasing oxidative stress
详细信息    查看全文
  • 作者:Meiling Yu (1)
    Jiangdong Xue (2)
    Yijing Li (1)
    Weiqian Zhang (1)
    Dexing Ma (1)
    Lian Liu (1)
    Zhigang Zhang (1)
  • 关键词:Arsenic trioxide ; Resveratrol ; Arsenic metabolism ; Oxidative stress ; Nephroprotective effect
  • 刊名:Archives of Toxicology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:87
  • 期:6
  • 页码:1025-1035
  • 全文大小:744KB
  • 参考文献:1. Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol 37:397-19 CrossRef
    2. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493-06 CrossRef
    3. Bergquist ER, Fischer RJ, Sugden KD, Martin BD (2009) Inhibition by methylated organo-arsenicals of the respiratory 2-oxo-acid dehydrogenases. J Organomet Chem 694:973-80 CrossRef
    4. Brazy PC, Balaban RS, Gullans SR, Mandel LJ, Dennis VW (1980) Inhibition of renal metabolism. Relative effects of arsenate on sodium, phosphate, and glucose transport by the rabbit proximal tubule. J Clin Invest 66:1211-221 CrossRef
    5. Cadenas S, Barja G (1999) Resveratrol, melatonin, vitamin E, and PBN protect against renal oxidative DNA damage induced by the kidney carcinogen KBrO3. Free Radic Biol Med 26:1531-537 CrossRef
    6. Chen CJ, Chen CW, Wu MM, Kuo TL (1992) Cancer potential in liver, lung, bladder and kidney due to ingested inorganic arsenic in drinking water. Br J Cancer 66:888-92 CrossRef
    7. Chen GQ, Zhu J, Shi XG, Ni JH, Zhong HJ, Si GY, Jin XL, Tang W, Li XS, Xong SM, Shen ZX, Sun GL, Ma J, Zhang P, Zhang TD, Gazin C, Naoe T, Chen SJ, Wang ZY, Chen Z (1996) In vitro studies on cellular and molecular mechanisms of arsenic trioxide (As2O3) in the treatment of acute promyelocytic leukemia: As2O3 induces NB4 cell apoptosis with downregulation of Bcl-2 expression and modulation of PML-RAR alpha/PML proteins. Blood 88:1052-061
    8. Chen B, Arnold LL, Cohen SM, Thomas DJ, Le XC (2011) Mouse arsenic (+3 oxidation state) methyltransferase genotype affects metabolism and tissue dosimetry of arsenicals after arsenite administration in drinking water. Toxicol Sci 124:320-26 CrossRef
    9. Chen SC, Chen CC, Kuo CY, Huang CH, Lin CH, Lu ZY, Chen YY, Lee HS, Wong RH (2012) Elevated risk of hypertension induced by arsenic exposure in Taiwanese rural residents: possible effects of manganese superoxide dismutase (MnSOD) and 8-oxoguanine DNA glycosylase (OGG1) genes. Arch Toxicol 86:869-78 CrossRef
    10. Chiou HY, Hsueh YM, Hsieh LL, Hsu YH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC, Chu TH, Chen-Wu C, Yang MH, Chen CJ (1997) Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res 386:197-07 CrossRef
    11. Clement MV, Hirpara JL, Chawdhury SH, Pervaiz S (1998) Chemopreventive agent resveratrol, a natural product derived from grapes, triggers CD95 signaling-dependent apoptosis in human tumor cells. Blood 92:996-002
    12. Cojocel C, Thomson MS (2004) Protective effect of resveratrol against 6-hydroxydopamine-induced impairment of renal p-aminohippurate transport. Arch Toxicol 78:525-32 CrossRef
    13. Cui X, Kobayashi Y, Hayakawa T, Hirano S (2004) Arsenic speciation in bile and urine following oral and intravenous exposure to inorganic and organic arsenics in rats. Toxicol Sci 82:478-87 CrossRef
    14. Davison K, Cote S, Mader S, Miller WH (2003) Glutathione depletion overcomes resistance to arsenic trioxide in arsenic-resistant cell lines. Leukemia 17:931-40 CrossRef
    15. Do Amaral CL, Francescato HD, Coimbra TM, Costa RS, Darin JD, Antunes LM, Bianchi Mde L (2008) Resveratrol attenuates cisplatin-induced nephrotoxicity in rats. Arch Toxicol 82:363-70 CrossRef
    16. Emadi A, Gore SD (2010) Arsenic trioxide—an old drug rediscovered. Blood Rev 24:191-99 CrossRef
    17. Floyd RA, West MS, Eneff KL, Hogsett WE, Tingey DT (1988) Hydroxyl free radical mediated formation of 8-hydroxyguanine in isolated DNA. Arch Biochem Biophys 262:266-72 CrossRef
    18. Fujihara J, Yasuda T, Kato H, Yuasa I, Panduro A, Kunito T, Takeshita H (2011) Genetic variants associated with arsenic metabolism within human arsenic (+3 oxidation state) methyltransferase show wide variation across multiple populations. Arch Toxicol 85:119-25 CrossRef
    19. Giovannini L, Migliori M, Longoni BM, Das DK, Bertelli AA, Panichi V, Filippi C, Bertelli A (2001) Resveratrol, a polyphenol found in wine, reduces ischemia reperfusion injury in rat kidneys. J Cardiovasc Pharm 37:262-70 CrossRef
    20. Giraudel JM, Diquelou A, Laroute V, Lees P, Toutain PL (2005) Pharmacokinetic/pharmacodynamic modelling of NSAIDs in a model of reversible inflammation in the cat. Br J Pharmacol 146:642-53 CrossRef
    21. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183-91 CrossRef
    22. Holthoff JH, Wang Z, Seely KA, Gokden N, Mayeux PR (2012) Resveratrol improves renal microcirculation, protects the tubular epithelium, and prolongs survival in a mouse model of sepsis-induced acute kidney injury. Kidney Int 81:370-78 CrossRef
    23. Jang M, Cai L, Udeani GO, Slowing KV, Thomas CF, Beecher CW, Fong HH, Farnsworth NR, Kinghorn AD, Mehta RG, Moon RC, Pezzuto JM (1997) Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 275:218-20 CrossRef
    24. Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275:33404-3408 CrossRef
    25. Kutuk O, Poli G, Basaga H (2006) Resveratrol protects against 4-hydroxynonenal-induced apoptosis by blocking JNK and c-JUN/AP-1 signaling. Toxicol Sci 90:120-32 CrossRef
    26. Lia MS, Hsueh YM, Chen CJ, Shyu MP, Chen SY, Kuo TL, Wu MM, Tai TY (1994) Ingested inorganic arsenic and prevalence of diabetes mellitus. Am J Epidemiol 139:484-92
    27. Liu J, Liu Y, Goyer RA, Achanzar W, Waalkes MP (2000) Metallothionein-I/II null mice are more sensitive than wild-type mice to the hepatotoxic and nephrotoxic effects of chronic oral or injected inorganic arsenicals. Toxicol Sci 55:460-67 CrossRef
    28. Lo JF, Wang HF, Tam MF, Lee TC (1992) Glutathione S-transferase pi in an arsenic-resistant Chinese hamster ovary cell line. Biochem J 288:977-82
    29. Messarah M, Saoudi M, Boumendjel A, Kadeche L, Boulakoud MS, EI Feki A (2012) Green tea extract alleviates arsenic-induced biochemical toxicity and lipid peroxidation in rats. Toxicol Ind Health. doi:10.1177/0748233711433934
    30. Miller WH Jr, Schipper HM, Lee JS, Singer J, Waxman S (2002) Mechanisms of action of arsenic trioxide. Cancer Res 62:3893-903
    31. Morales AI, Buitrago JM, Santiago JM, Fernandez-Tagarro M, Lopez-Novoa JM, Perez-Barriocanal F (2002) Protective effect of trans-resveratrol on gentamicin-induced nephrotoxicity. Antioxid Redox Sign 4:893-98 CrossRef
    32. Sakurai T, Kojima C, Kobayashi Y, Hirano S, Sakurai MH, Waalkes MP, Himeno S (2006) Toxicity of a trivalent organic arsenic compound, dimethylarsinous glutathione in a rat liver cell line (TRL 1215). Br J Pharmacol 149:888-97 CrossRef
    33. Schl?wicke Engstr?m K, Broberg K, Concha G, Nermell B, Warholm M, Vahter M (2007) Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 115:599-05 CrossRef
    34. Schwerdtle T, Walter I, Mackiw I, Hartwig A (2003) Induction of oxidative DNA damage by arsenite and its trivalent and pentavalent methylated metabolites in cultured human cells and isolated DNA. Carcinogenesis 24:967-74 CrossRef
    35. Shankar S, Singh G, Srivastava RK (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front Biosci 12:4839-854 CrossRef
    36. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255:67-8 CrossRef
    37. Socci DJ, Bjugstad KB, Jones HC, Pattisapu JV, Arendash GW (1999) Evidence that oxidative stress is associated with the pathophysiology of inherited hydrocephalus in the H-Tx rat model. Exp Neurol 155:109-17 CrossRef
    38. Stern AH (2012) Assessing the threshold for the duodenal GSH/GSSG ratio in the mouse associated with sodium dichromate dihydrate ingestion reported by Thompson et al. (2011). Toxicol Sci 126:285-86 CrossRef
    39. Takeuchi T, Nakajima M, Ohta Y, Mure K, Takeshita T, Morimoto K (1994) Evaluation of 8-hydroxydeoxyguanosine, a typical oxidative DNA damage, in human leukocytes. Carcinogenesis 15:1519-523 CrossRef
    40. Tennen RI, Michishita-Kioi E, Chua KF (2012) Finding a target for resveratrol. Cell 148:387-89 CrossRef
    41. Thomas DJ, Styblo M, Lin S (2001) The cellular metabolism and systemic toxicity of arsenic. Toxicol Appl Pharm 176:127-44 CrossRef
    42. Vuky J, Yu R, Schwartz L, Motzer RJ (2002) Phase II trial of arsenic trioxide in patients with metastatic renal cell carcinoma. Invest New Drug 20:327-30 CrossRef
    43. Wang L, Kou MC, Weng CY, Hu LW, Wang YJ, Wu MJ (2012) Arsenic modulates heme oxygenase-1, interleukin-6, and vascular endothelial growth factor expression in endothelial cells: roles of ROS, NF-κB, and MAPK pathways. Arch Toxicol 86:879-96 CrossRef
    44. Waxman S, Anderson KC (2001) History of the development of arsenic derivatives in cancer therapy. Oncologist 6:3-0 CrossRef
    45. Westervelt P, Brown RA, Adkins DR, Khoury H, Curtin P, Hurd D, Luger SM, Ma MK, Ley TJ, DiPersio JF (2001) Sudden death among patients with acute promyelocytic leukemia treated with arsenic trioxide. Blood 98:266-71 CrossRef
    46. Yamanaka K, Okada S (1994) Induction of lung-specific DNA damage by metabolically methylated arsenics via the production of free radicals. Environ Health Perspect 102:37-0
    47. Zhang WQ, Xue JD, Ge M, Yu ML, Liu L, Zhang ZG (2013) Resveratrol attenuates hepatotoxicity of rats exposed to arsenic trioxide. Food Chem Toxicol 51:87-2 CrossRef
    48. Zhao XY, Li GY, Liu Y, Chai LM, Chen JX, Zhang Y, Du ZM, Lu YJ, Yang BF (2008) Resveratrol protects against arsenic trioxide-induced cardiotoxicity in vitro and in vivo. Br J Pharmacol 154:105-13 CrossRef
  • 作者单位:Meiling Yu (1)
    Jiangdong Xue (2)
    Yijing Li (1)
    Weiqian Zhang (1)
    Dexing Ma (1)
    Lian Liu (1)
    Zhigang Zhang (1)

    1. College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin, 150030, China
    2. College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, 028042, China
  • ISSN:1432-0738
文摘
Arsenic trioxide (As2O3) is an environmental toxicant and a potent antineoplastic agent. Exposure to arsenic causes renal cancer. Resveratrol is a well-known polyphenolic compound that is reported to reduce As2O3-induced cardiotoxicity. The present study aimed to investigate the effect of resveratrol on As2O3-induced nephrotoxicity and arsenic metabolism. Chinese Dragon-Li cats were injected with 1?mg/kg As2O3 on alternate days; resveratrol (3?mg/kg) was administered via the forearm vein 1?h before the As2O3 treatment. On the sixth day, the cats were killed to determine the histological renal damage, renal function, the accumulation of arsenic, and antioxidant activities in the kidney. Urine samples were taken for arsenic speciation. In the resveratrol?+?As2O3-treated group, activities of glutathione peroxidase, catalase, and superoxide dismutase, the ratio of reduced glutathione to oxidized glutathione, the total arsenic concentrations, and the percentage of methylated arsenic in urine were significantly increased. The concentrations of renal malondialdehyde, reactive oxygen species, 8-hydroxydeoxyguanosine, serum creatinine, blood urea nitrogen, and renal arsenic accumulation were significantly decreased and reduced renal morphologic injury was observed compared with the As2O3-treated group. These results demonstrate that resveratrol could significantly scavenge reactive oxygen species, inhibit As2O3-induced oxidative damage, and significantly attenuate the accumulation of arsenic in renal tissues by facilitating As2O3 metabolism. These data suggest that use of resveratrol as postremission therapy for acute promyelocytic leukemia as well as adjunctive therapy in patients with exposure to arsenic may decrease arsenic nephrotoxicity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700