Rat liver sinusoidal surface N-linked glycoproteomic analysis by affinity enrichment and mass spectrometric identification
详细信息    查看全文
  • 作者:Jianglin Li (1)
    Jun Gao (2)
    Miao Jiang (1)
    Jia Chen (1)
    Zhonghua Liu (1)
    Ping Chen (1)
    Songping Liang (1)

    1. Key Laboratory of Protein Chemistry and Developmental Biology of the Ministry of Education
    ; College of Life Sciences ; Hunan Normal University ; Changsha ; 410081 ; P. R. China
    2. Qingyuan City People鈥檚 Hospital of Jinan University
    ; Qingyuan ; Guangdong ; 511518 ; P. R. China
  • 关键词:liver sinusoidal endothelial surface ; N ; glycoproteomic ; N ; glyco ; FASP ; mass spectrometry
  • 刊名:Biochemistry (Moscow)
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:80
  • 期:3
  • 页码:260-275
  • 全文大小:1,084 KB
  • 参考文献:1. Zielinska, D F, Gnad, F, Wisniewski, J R, Mann, M (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141: pp. 897-907 CrossRef
    2. Wisniewski, J R (2011) Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids 41: pp. 223-233 CrossRef
    3. Apweiler, R, Hermjakob, H, Sharon, N (1999) On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database. Biochim. Biophys. Acta (BBA)-General Subjects 1473: pp. 4-8 CrossRef
    4. Varki, A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3: pp. 97-130 CrossRef
    5. Gahmberg, C G, Tolvanen, M (1996) Why mammalian cell surface proteins are glycoproteins. Trends Biochem. Sci. 21: pp. 308-311 CrossRef
    6. Tian, Y, Zhang, H (2013) Characterization of disease-associated N-linked glycoproteins. Proteomics 13: pp. 504-511 CrossRef
    7. Blomme, B, Steenkiste, C, Callewaert, N, Vlierberghe, H (2009) Alteration of protein glycosylation in liver diseases. J. Hepatol. 50: pp. 592-603 CrossRef
    8. Scott, D W, Patel, R P (2013) Endothelial heterogeneity and adhesion molecules N-glycosylation: implications in leukocyte trafficking in inflammation. Glycobiology 23: pp. 622-633 CrossRef
    9. Lee, A, Kolarich, D, Haynes, P A, Jensen, P H, Baker, M S, Packer, N H (2009) Rat liver membrane glycoproteome: enrichment by phase partitioning and glycoprotein capture. J. Proteome Res. 8: pp. 770-781 CrossRef
    10. Wisniewski, J R, Zougman, A, Nagaraj, N, Mann, M (2009) Universal sample preparation method for proteome analysis. Nat. Methods 6: pp. 359-362 CrossRef
    11. Wisniewski, J R, Ostasiewicz, P, Mann, M (2011) High recovery FASP applied to the proteomic analysis of microdissected formalin-fixed paraffin-embedded cancer tissues retrieves known colon cancer markers. J. Proteome Res. 10: pp. 3040-3049 CrossRef
    12. Zielinska, D F, Gnad, F, Schropp, K, Wisniewski, J R, Mann, M (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol. Cell 46: pp. 542-548 CrossRef
    13. Wisniewski, J R, Zougman, A, Mann, M (2009) Combination of FASP and Stage Tip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8: pp. 5674-5678 CrossRef
    14. Wisniewski, J R, Zielinska, D F, Mann, M (2011) Comparison of ultrafiltration units for proteomic and N-glycoproteomic analysis by the filter-aided sample preparation method. Anal. Biochem. 410: pp. 307-309 CrossRef
    15. Stolz, D B, Ross, M A, Salem, H M, Mars, W M, Michalopoulos, G K, Enomoto, K (1999) Cationic colloidal silica membrane perturbation as a means of examining changes at the sinusoidal surface during liver regeneration. Am. J. Pathol. 155: pp. 1487-1498 CrossRef
    16. Durr, E, Yu, J, Krasinska, K M, Carver, L A, Yates, J R, Testa, J E, Oh, P, Schnitzer, J E (2004) Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 22: pp. 985-992 CrossRef
    17. Li, X, Xie, C, Cao, J, He, Q, Cao, R, Lin, Y, Jin, Q, Chen, P, Wang, X, Liang, S (2008) An in vivo membrane density perturbation strategy for identification of liver sinusoidal surface proteome accessible from the vasculature. J. Proteome Res. 8: pp. 123-132 CrossRef
    18. Huang, D W, Sherman, B T, Tan, Q, Kir, J, Liu, D, Bryant, D, Guo, Y, Stephens, R, Baseler, M W, Lane, H C (2007) DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 35: pp. W169-W175 CrossRef
    19. Huang, D W, Sherman, B T, Lempicki, R A (2008) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4: pp. 44-57 CrossRef
    20. Aoki, K F, Kanehisa, M (2005) Using the KEGG database resource. Curr. Protoc. Bioinform. 1: pp. 1.12
    21. Josic, D, Clifton, J G (2007) Mammalian plasma membrane proteomics. Proteomics 7: pp. 3010-3029 CrossRef
    22. Qiu, R, Regnier, F E (2005) Use of multidimensional lectin affinity chromatography in differential glycoproteomics. Anal. Chem. 77: pp. 2802-2809 CrossRef
    23. Santoni, V, Kieffer, S, Desclaux, D, Masson, F, Rabilloud, T (2000) Membrane proteomics: use of additive main effects with multiplicative interaction model to classify plasma membrane proteins according to their solubility and electrophoretic properties. Electrophoresis 21: pp. 3329-3344 CrossRef
    24. Geraud, C, Schledzewski, K, Demory, A, Klein, D, Kaus, M, Peyre, F, Sticht, C, Evdokimov, K, Lu, S, Schmieder, A (2010) Liver sinusoidal endothelium: a microenvironment-dependent differentiation program in rat including the novel junctional protein liver endothelial differentiation-associated protein-1. Hepatology 52: pp. 313-326 CrossRef
    25. Ganesan, L P, Mohanty, S, Kim, J, Clark, K R, Robinson, J M, Anderson, C L (2011) Rapid and efficient clearance of blood-borne virus by liver sinusoidal endothelium. PLoS Pathog. 7: pp. e1002281 CrossRef
    26. Mitchell, S J, Huizer-Pajkos, A, Cogger, V C, McLachlan, A J, Couteur, D G, Jones, B, Cabo, R, Hilmer, S N (2011) Age-related pseudocapillarization of the liver sinusoidal endothelium impairs the hepatic clearance of acetaminophen in rats. J. Gerontol. Ser. A: Biol. Sci. Med. Sci. 66: pp. 400-408 CrossRef
    27. Reichen, J (1999) The role of the sinusoidal endothelium in liver function. Physiology 14: pp. 117-121
    28. Solaun, M S, Mendoza, L, Luca, M, Gutierrez, V, Lopez, M P, Olaso, E, Sim, L, Kim, B, Vidal-Vanaclocha, F (2002) Endostatin inhibits murine colon carcinoma sinusoidal-type metastases by preferential targeting of hepatic sinusoidal endothelium. Hepatology 35: pp. 1104-1116 CrossRef
    29. Ding, B-S, Nolan, D J, Butler, J M, James, D, Babazadeh, A O, Rosenwaks, Z, Mittal, V, Kobayashi, H, Shido, K, Lyden, D (2010) Inductive angiocrine signals from sinusoidal endothelium are required for liver regeneration. Nature 468: pp. 310-315 CrossRef
    30. Gamble, J, Vadas, M, McCaughan, G (2011) Sinusoidal endothelium is essential for liver regeneration. Hepatology 54: pp. 731-733 CrossRef
    31. Kuwada, S K, Kuang, J, Li, X (2005) Integrin alpha5/beta1 expression mediates HER-2 down-regulation in colon cancer cells. J. Biol. Chem. 280: pp. 19027-19035 CrossRef
    32. Dingemans, A-M C, Boogaart, V, Vosse, B A, Suylen, R-J, Griffioen, A W, Thijssen, V L (2010) Integrin expression profiling identifies integrin alpha5 and beta1 as prognostic factors in early stage nonsmall cell lung cancer. Mol. Cancer 9: pp. 1476-4598 CrossRef
    33. Wang, J L, Ren, K F, Chang, H, Jia, F, Li, B C, Ji, Y, Ji, J (2013) Direct adhesion of endothelial cells to bioinspired poly(dopamine) coating through endogenous fibronectin and integrin alpha5/beta1. Macromol. Biosci. 13: pp. 483-493 CrossRef
    34. Welti, J, Loges, S, Dimmeler, S, Carmeliet, P (2013) Recent molecular discoveries in angiogenesis and antiangiogenic therapies in cancer. J. Clin. Invest. 123: pp. 3190-3200 CrossRef
    35. Priglinger, C. S., Szober, C. M., Priglinger, S. G., Merl, J., Euler, K. N., Kernt, M., Gondi, G., Behler, J., Geerlof, A., Kampik, A., Ueffing, M., and Hauck, S. M. (2013) Galectin-3 induces clustering of CD147 and integrin-beta1 transmembrane glycoprotein receptors on the RPE cell surface, / PLoS One, 8.
    36. Gu, J, Isaji, T, Sato, Y, Kariya, Y, Fukuda, T (2009) Importance of N-glycosylation on alpha5/beta1 integrin for its biological functions. Biol. Pharm. Bull. 32: pp. 780-785 CrossRef
    37. Weidle, U H, Eggle, D, Klostermann, S, Swart, G W (2010) ALCAM/CD166: cancer-related issues. Cancer Genom. Proteom. 7: pp. 231-243
    38. Yan, M, Yang, X, Wang, L, Clark, D, Zuo, H, Ye, D, Chen, W, Zhang, P (2013) Plasma membrane proteomics of tumor spheres identify CD166 as a novel marker for cancer stem-like cells in head and neck squamous cell carcinoma. Mol. Cell. Proteom. 12: pp. 3271-3284 CrossRef
    39. Safaee, M, Clark, A J, Ivan, M E, Oh, M C, Bloch, O, Sun, M Z, Oh, T, Parsa, A T (2013) CD97 is a multifunctional leukocyte receptor with distinct roles in human cancers (review). Int. J. Oncol. 43: pp. 1343-1350
    40. Wang, T, Ward, Y, Tian, L, Lake, R, Guedez, L, Stetler-Stevenson, W G, Kelly, K (2005) CD97, an adhesion receptor on inflammatory cells, stimulates angiogenesis through binding integrin counterreceptors on endothelial cells. Blood 105: pp. 2836-2844 CrossRef
    41. Hamann, J, Veninga, J H H, Groot, D M, Visser, L, Hofstra, C L, Tak, P P, Laman, J D, Boots, A M, Eenennaam, H (2011) CD97 in leukocyte trafficking. Adv. Exp. Med. Biol. 706: pp. 128-137 CrossRef
    42. Jung, M-Y, Park, S-Y, Kim, I-S (2007) Stabilin-2 is involved in lymphocyte adhesion to the hepatic sinusoidal endothelium via the interaction with alpha M/beta 2 integrin. J. Leukoc. Biol. 82: pp. 1156-1165 CrossRef
    43. Mertz, A F, Che, Y, Banerjee, S, Goldstein, J M, Rosowski, K A, Revilla, S F, Niessen, C M, Marchetti, M C, Dufresne, E R, Horsley, V (2013) Cadherin-based intercellular adhesions organize epithelial cell-matrix traction forces. Proc. Natl. Acad. Sci. USA 110: pp. 842-847 CrossRef
    44. Guo, H, Li, R, Zucker, S, Toole, B P (2000) EMM-PRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 60: pp. 888-891
    45. Tang, W, Chang, S B, Hemler, M E (2004) Links between CD147 function, glycosylation, and caveolin-1. Mol. Biol. Cell. 15: pp. 4043-4050 CrossRef
    46. Katz, M, Amit, I, Citri, A, Shay, T, Carvalho, S, Lavi, S, Milanezi, F, Lyass, L, Amariglio, N, Jacob-Hirsch, J (2007) A reciprocal tensin-3-cten switch mediates EGF-driven mammary cell migration. Nature Cell Biol. 9: pp. 961-969 CrossRef
    47. Seshacharyulu, P, Ponnusamy, M P, Haridas, D, Jain, M, Ganti, A K, Batra, S K (2012) Targeting the EGFR signaling pathway in cancer therapy. Exp. Opin. Therap. Targets 16: pp. 15-31 CrossRef
    48. Mottolese, M, Natali, P, Coli, A, Bigotti, G, Benevolo, M, Cione, A, Raus, L, Carapella, C (1997) Comparative analysis of proliferating cell nuclear antigen and epidermal growth factor receptor expression in glial tumors: correlation with histological grading. Anticancer Res. 18: pp. 1951-1956
    49. Sato, C, Kim, J-H, Abe, Y, Saito, K, Yokoyama, S, Kohda, D (2000) Characterization of the N-oligosaccharides attached to the atypical Asn-X-Cys sequence of recombinant human epidermal growth factor receptor. J. Biochem. 127: pp. 65-72 CrossRef
    50. Wu, S-L, Kim, J, Hancock, W S, Karger, B (2005) Extended Range Proteomic Analysis (ERPA): a new and sensitive LC-MS platform for high sequence coverage of complex proteins with extensive post-translational modifications comprehensive analysis of beta-casein and epidermal growth factor receptor (EGFR). J. Proteome Res. 4: pp. 1155-1170 CrossRef
    51. Liu, Y-C, Yen, H-Y, Chen, C-Y, Chen, C-H, Cheng, P-F, Juan, Y-H, Chen, C-H, Khoo, K-H, Yu, C-J, Yang, P-C (2011) Sialylation and fucosylation of epidermal growth factor receptor suppress its dimerization and activation in lung cancer cells. Proc. Natl. Acad. Sci. USA 108: pp. 11332-11337 CrossRef
    52. Smedsrod, B, Bleser, P, Braet, F, Lovisetti, P, Vanderkerken, K, Wisse, E, Geerts, A (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35: pp. 1509-1516 CrossRef
    53. Smedsrod, B, Melkko, J, Araki, N, Sano, H, Horiuchi, S (1997) Advanced glycation end products are eliminated by scavenger-receptor-mediated endocytosis in hepatic sinusoidal Kupffer and endothelial cells. Biochem. J. 322: pp. 567-573
    54. Seternes, T, Sorensen, K, Smedsrod, B (2002) Scavenger endothelial cells of vertebrates: a nonperipheral leukocyte system for high-capacity elimination of waste macromolecules. Proc. Natl. Acad. Sci. USA 99: pp. 7594-7597 CrossRef
    55. Chandler, K, Goldman, R (2013) Glycoprotein disease markers and single protein omics. Mol. Cell. Proteom. 12: pp. 836-845 CrossRef
    56. Yates Iii, J R, Gilchrist, A, Howell, K E, Bergeron, J J (2005) Proteomics of organelles and large cellular structures. Nature Rev. Mol. Cell Biol. 6: pp. 702-714 CrossRef
    57. Racanelli, V, Rehermann, B (2006) The liver as an immunological organ. Hepatology 43: pp. S54-S62 CrossRef
    58. Sawamura, T, Nakada, H, Hazama, H, Shiozaki, Y, Sameshima, Y, Tashiro, Y (1984) Hyperasialoglycoproteinemia in patients with chronic liver diseases and/or liver cell carcinoma. Asialoglycoprotein receptor in cirrhosis and liver cell carcinoma. Gastroenterology 87: pp. 1217-1221
    59. Burgess, J B, Baenziger, J U, Brown, W R (1992) Abnormal surface distribution of the human asialoglycoprotein receptor in cirrhosis. Hepatology 15: pp. 702-706 CrossRef
    60. Braet, F, Wisse, E (2002) Structural and functional aspects of liver sinusoidal endothelial cell fenestrae: a review. Comp. Hepatol. 1: pp. 1 CrossRef
    61. Bedossa, P, Paradis, V (2003) Liver extracellular matrix in health and disease. J. Pathol. 200: pp. 504-515 CrossRef
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Bioorganic Chemistry
    Microbiology
    Biomedicine
    Russian Library of Science
  • 出版者:MAIK Nauka/Interperiodica distributed exclusively by Springer Science+Business Media LLC.
  • ISSN:1608-3040
文摘
Glycosylation in liver is one of the most biologically important protein modifications. It plays critical roles in many physiological and pathological processes by virtue of its unique location at the blood-tissue interface, including angiogenesis, liver cancer, cirrhosis, and fibrosis. To analyze glycosylation of plasma membrane proteins in liver sinusoidal endothelial cells (LSEC), N-glycopeptides of the LSEC surface were enriched using a filter-assisted sample preparation-based lectin affinity capture method and subsequently identified with mass spectrometry. In total, 225 unique N-glycosylation sites on 152 glycoproteins were identified, of which 119 (53%) sites had not previously been determined experimentally. Among the glycoproteins, 53% were classified as plasma membrane proteins and 47 (31%) as signaling proteins and receptors. Moreover, 23 cluster of differentiation antigens with 49 glycopeptides were detected within the membrane glycoproteins of the liver sinusoidal surface. Furthermore, bioinformatics analysis revealed that the majority of identified glycoproteins have an impact on processes of LSEC. Therefore, N-glycoproteomic analysis of the liver sinusoidal surface may provide useful information on liver regeneration and facilitate liver disease diagnosis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700