Targeted anti-cancer prodrug based on carbon nanotube with photodynamic therapeutic effect and pH-triggered drug release
详细信息    查看全文
  • 作者:Jianquan Fan (1)
    Fang Zeng (1)
    Jiangsheng Xu (1)
    Shuizhu Wu (1)
  • 关键词:Targeted ; Prodrug ; Photodynamic ; pH ; triggered release ; Carbon nanotube
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:15
  • 期:9
  • 全文大小:741KB
  • 参考文献:1. Al-Jamal KT, Nunes A, Methven L, Ali-Boucetta H, Li SP, Toma FM, Herrero MA, Al-Jamal WT, ten Eikelder HMM, Foster J, Mather S, Prato M, Bianco A, Kostarelos K (2012) Degree of chemical functionalization of carbon nanotubes determines tissue distribution and excretion profile. Angew Chem Int Ed 51:6389-393 CrossRef
    2. Aw MS, Addai-Mensah J, Losic D (2012) A multi-drug delivery system with sequential release using titania nanotube arrays. Chem Commun 48:3348-350 CrossRef
    3. Bae Y, Jang W, Nishiyama N, Fukushima S, Kataoka K (2005) Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Mol Biosyst 1:242-50 CrossRef
    4. Bae Y, Nishiyama N, Kataoka K (2007) In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconj Chem 18:1131-139 CrossRef
    5. Banerjee S, Hemraj-Benny T, Wong SS (2005) Covalent surface chemistry of single-walled carbon nanotubes. Adv Mater 17:17-9 CrossRef
    6. Chae SR, Hotze EM, Wiesner MR (2009) Evaluation of the oxidation of organic compounds by aqueous suspensions of photosensitized hydroxylated-C-60 fullerene aggregates. Environ Sci Technol 43:6208-213 CrossRef
    7. Chae SR, Hotze EM, Xiao Y, Rose J, Wiesner MR (2010) Comparison of methods for fullerene detection and measurements of reactive oxygen production in cosmetic products. Environ Eng Sci 27:797-04 CrossRef
    8. Chen J, Chen S, Zhao X, Kuznetsova LV, Wong SS, Ojima I (2008) Functionalized single-walled carbon nanotubes as rationally designed vehicles for tumor-targeted drug delivery. J Am Chem Soc 130:16778-6785 CrossRef
    9. Chiu YR, Ho WJ, Chao JS, Yuan CJ (2012) Enzyme-encapsulated silica nanoparticle for cancer chemotherapy. J Nanopart Res 14:829 CrossRef
    10. Cydzik I, Bilewicz A, Abbas K, Simonelli F, Bulgheroni A, Holzwarth U, Gibson N (2012) A novel method for synthesis of Co-56-radiolabelled silica nanoparticles. J Nanopart Res 14:1185 CrossRef
    11. Dalhaimer P, Engler AJ, Parthasarathy R, Discher DE (2004) Targeted worm micelles. Biomacromolecules 5:1714-719 CrossRef
    12. Dicko A, Mayer LD, Tardi PG (2010) Use of nanoscale delivery systems to maintain synergistic drug ratios in vivo. Expert Opin Drug Deliv 7:1329-341 CrossRef
    13. Dolatabadi JEN, Omidi Y, Losic D (2011) Carbon nanotubes as an advanced drug and gene delivery nanosystem. Curr Nanosci 7:297-14 CrossRef
    14. Durgadas CV, Sharma CP, Paul W, Rekha MR, Sreenivasan K (2012) Aggregation of gold nanoparticles followed by methotrexate release enables Raman imaging of drug delivery into cancer cells. J Nanopart Res 14:1127 CrossRef
    15. Fabbro C, Ali-Boucetta H, Da Ros T, Kostarelos K, Bianco A, Prato M (2012) Targeting carbon nanotubes against cancer. Chem Commun 48:3911-926 CrossRef
    16. Fan JQ, Fang G, Wang XD, Zeng F, Xiang YF, Wu SZ (2011) Targeted anticancer prodrug with mesoporous silica nanoparticles as vehicles. Nanotechnology 22:455102 CrossRef
    17. Fan JQ, Zeng F, Wu SZ, Wang XD (2012) Polymer micelle with pH-triggered hydrophobic–hydrophilic transition and de-cross-linking process in the core and its application for targeted anticancer drug delivery. Biomacromolecules 13:4126-137
    18. Fan JQ, Fang G, Zeng F, Wang XD, Wu SZ (2013) Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small 9:613-21 CrossRef
    19. Frederix F, Bonroy K, Reekmans G, Laureyn W, Campitelli A, Abramov MA, Dehaen W, Maes G (2004) Reduced nonspecific adsorption on covalently immobilized protein surfaces using poly(ethylene oxide) containing blocking agents. J Biochem Biophys Methods 58:67-4 CrossRef
    20. Geng Y, Dalhaimer P, Cai S, Tsai R, Tewari M, Minko T, Discher DE (2007) Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2:249-55 CrossRef
    21. Gulati K, Aw MS, Findlay D, Losic D (2012) Local drug delivery to the bone by drug-releasing implants: perspectives of nano-engineered titania nanotube arrays. Ther Deliv 3:857-73 CrossRef
    22. Guldi DM, Sgobba V (2011) Carbon nanostructures for solar energy conversion schemes. Chem Commun 47:606-10 CrossRef
    23. Guldi DM, Rahman GMA, Jux N, Balbinot D, Hartnagel U, Tagmatarchis N, Prato M (2005) Functional single-wall carbon nanotube nanohybrids-associating SWNTs with water-soluble enzyme model systems. J Am Chem Soc 127:9830-838 CrossRef
    24. Hahn U, Engmann S, Oelsner C, Ehli C, Guldi DM, Torres T (2010) Immobilizing water-soluble dendritic electron donors and electron acceptors-phthalocyanines and perylenediimides-onto single wall carbon nanotubes. J Am Chem Soc 132:6392-401 CrossRef
    25. Hamon MA, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis ME, Haddon RC (2001) End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett 347:8-2 CrossRef
    26. He Q, Shi J (2011) Mesoporous silica nanoparticle based nano drug delivery systems: synthesis, controlled drug release and delivery, pharmacokinetics and biocompatibility. J Mater Chem 21:5845-855 CrossRef
    27. Heister E, Lamprecht C, Neves V, Tilmaciu C, Datas L, Flahaut E, Soula B, Hinterdorfer P, Coley HM, Silva SRP, McFadden J (2010) Higher dispersion efficacy of functionalized carbon nanotubes in chemical and biological environments. ACS Nano 4:2615-626 CrossRef
    28. Herranz MA, Ehli C, Campidelli S, Gutierrez M, Hug GL, Ohkubo K, Fukuzumi S, Prato M, Martin N, Guldi DM (2008) Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. J Am Chem Soc 30:66-3 CrossRef
    29. Hotze EM, Labille J, Alvarez P, Wiesner MR (2008) Mechanisms of photochemistry and reactive oxygen production by fullerene suspensions in water. Environ Sci Technol 42:4175-180 CrossRef
    30. Hotze EM, Badireddy AR, Chellam S, Wiesner MR (2009) Mechanisms of bacteriophage inactivation via singlet oxygen generation in UV illuminated fullerol suspensions. Environ Sci Technol 43:6639-645 CrossRef
    31. Iwamoto Y, Yamakoshi Y (2006) A highly water-soluble C-60-NVP copolymer: a potential material for photodynamic therapy. Chem Commun 46:4805-807 CrossRef
    32. Jin H, Heller DA, Strano MS (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett 8:1577-585 CrossRef
    33. Kam NW, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem Int Ed 45:577-81 CrossRef
    34. Kirkpatrick DL, Weiss M, Naumov A, Bartholomeusz G, Weisman RB, Gliko O (2012) Carbon nanotubes: solution for the therapeutic delivery of siRNA. Materials 5:278-01 CrossRef
    35. Knorr FJ, Hung WC, Wai CM (2009) Aromatic electron acceptors change the chirality dependence of single-walled carbon nanotube oxidation. Langmuir 25:10417-0421 CrossRef
    36. Kratz F, Muller IA, Ryppa C, Warnecke A (2008) Prodrug strategies in anticancer chemotherapy. ChemMedChem 3:20-3 CrossRef
    37. Lee CC, Cramer AT, Frechet JMJ (2006) An intramolecular cyclization reaction is responsible for the in vivo inefficacy and apparent pH insensitive hydrolysis kinetics of hydrazone carboxylate derivatives of doxorubicin. Bioconj Chem 17:1364-368 CrossRef
    38. Liu Z, Sun XM, Nakayama-Ratchford N, Dai HJ (2007) Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1:50-6 CrossRef
    39. Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen XY, Dai HJ (2008) Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68:6652-660 CrossRef
    40. Liu Z, Robinson JT, Tabakman SM, Yang K, Dai HJ (2011) Carbon materials for drug delivery & cancer therapy. Mater Today 14:7-
    41. Mashat A, Deng L, Altawashi A, Sougrat R, Wang GC, Khashab NM (2012) Zippered release from polymer-gated carbon nanotubes. J Mater Chem 22:11503-1508 CrossRef
    42. Pickering KD, Wiesner MR (2005) Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environ Sci Technol 39:1359-365 CrossRef
    43. Prabaharan M, Grailer JJ, Pilla S, Steeber DA, Gong S (2009) Amphiphilic multi-arm-block copolymer conjugated with doxorubicin via pH-sensitive hydrazone bond for tumor-targeted drug delivery. Biomaterials 30:5757-766 CrossRef
    44. Prato M, Kostarelos K, Bianco A (2008) Functionalized carbon nanotubes in drug design and discovery. Acc Chem Res 41:60-8 CrossRef
    45. Rezaei B, Majidi N, Noori S, Hassan ZM (2011) Multiwalled carbon nanotubes effect on the bioavailability of artemisinin and its cytotoxity to cancerous cells. J Nanopart Res 13:6339-346 CrossRef
    46. Roberts PC, Lamb RA, Compans RW (1998) The M1 and M2 proteins of influenza: a virus are important determinants in filamentous particle formation. Virology 240:127-37 CrossRef
    47. Rocha JDR, Bachilo SM, Ghosh S, Arepalli S, Weisman RB (2011) Efficient spectrofluorimetric analysis of single-walled carbon nanotube samples. Anal Chem 83:7431-437 CrossRef
    48. Sanz V, Coley HM, Silva SRP, McFadden J (2012) Modeling the binding of peptides on carbon nanotubes and their use as protein and DNA carriers. J Nanopart Res 14:695 CrossRef
    49. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655-670 CrossRef
    50. Schulz-Drost C, Sgobba V, Gerhards C, Leubner S, Calderon RMK, Ruland A, Guldi DM (2010) Innovative inorganic–organic nanohybrid materials: coupling quantum dots to carbon nanotubes. Angew Chem Int Ed 49:6425-429 CrossRef
    51. Shortridge KF, Zhou NN, Guan Y, Gao P, Ito T, Kawaoka Y, Kodihalli S, Krauss S, Markwell D, Murti KG, Norwood M, Senne D, Sims L, Takada A, Webster RG (1998) Characterization of avian H5N1 influenza viruses from poultry in Hong Kong. Virology 252:331-42 CrossRef
    52. Singh Y, Palombo M, Sinko PJ (2008) Recent trends in targeted anticancer prodrug and conjugate design. Curr Med Chem 15:1802-826 CrossRef
    53. Song HJ, Li N, Jing X, Yang X, Tang H (2011) Synthesis and characterization of “mulberry-like Fe3O4/multiwalled carbon nanotube nanocomposites. J Nanopart Res 13:5457-464 CrossRef
    54. Tu HL, Lin YS, Lin HY, Hung Y, Lo LW, Chen YF, Mou CY (2009) In vitro studies of functionalized mesoporous silica nanoparticles for photodynamic therapy. Adv Mater 21:172-77 CrossRef
    55. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964 CrossRef
    56. Weisman RB (2010) Fluorimetric characterization of single-walled carbon nanotubes. Anal Bioanal Chem 396:1015-023 CrossRef
    57. Xiao DL, Dramou P, He H, Lien APH, Li H, Yao YY, Chuong PH (2012) Magnetic carbon nanotubes: synthesis by a simple solvothermal process and application in magnetic targeted drug delivery system. J Nanopart Res 14:984 CrossRef
    58. Yang X, Grailer JJ, Pilla S, Steeber DA, Gong S (2010) Tumor-targeting, pH-responsive, and stable unimolecular micelles as drug nanocarriers for targeted cancer therapy. Bioconj Chem 21:496-04 CrossRef
    59. Yu H, Jin YG, Peng F, Wang HJ, Yang J (2008) Kinetically controlled side-wall functionalization of carbon nanotubes by nitric acid oxidation. J Phys Chem C 112:6758-763 CrossRef
    60. Zamboni WC (2008) Concept and clinical evaluation of carrier-mediated anticancer agents. Oncologist 13:248-60 CrossRef
    61. Zhao TT, Wu H, Yao SQ, Xu QH, Xu GQ (2010) Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization. Langmuir 26:14937-4942 CrossRef
    62. Zheng M, Davidson F, Huang X (2003) Ethylene glycol monolayer protected nanoparticles for eliminating nonspecific binding with biological molecules. J Am Chem Soc 125:7790-791 CrossRef
    63. Zheng M, Li Z, Huang X (2004) Ethylene glycol monolayer protected nanoparticles: synthesis, characterization, and interactions with biological molecules. Langmuir 20:4226-235 CrossRef
  • 作者单位:Jianquan Fan (1)
    Fang Zeng (1)
    Jiangsheng Xu (1)
    Shuizhu Wu (1)

    1. College of Materials Science & Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
文摘
Herein, we describe a multifunctional anti-cancer prodrug system based on water-dispersible carbon nanotube (CNT); this prodrug system features active targeting, pH-triggered drug release, and photodynamic therapeutic properties. For this prodrug system (with the size of ~100-00?nm), an anti-cancer drug, doxorubicin (DOX), was incorporated onto CNT via a cleavable hydrazone bond; and a targeting ligand (folic acid) was also coupled onto CNT. This prodrug can preferably enter folate receptor (FR)-positive cancer cells and undergo intracellular release of the drug triggered by the reduced pH. The targeted CNT-based prodrug system can cause lower cell viability toward FR-positive cells compared to the non-targeted ones. Moreover, the CNT carrier exhibits photodynamic therapeutic (PDT) action; and the cell viability of FR-positive cancer cells can be further reduced upon light irradiation. The dual effects of pH-triggered drug release and PDT increase the therapeutic efficacy of the DOX–CNT prodrug. This study may offer some useful insights on designing and improving the applicability of CNT for other drug delivery systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700