Freestanding macroscopic metal-oxide nanotube films derived from carbon nanotube film templates
详细信息    查看全文
  • 作者:He Ma ; Yang Wei ; Jiangtao Wang ; Xiaoyang Lin ; Wenyun Wu ; Yang Wu…
  • 关键词:metal ; oxide nanotube film ; atomic layer deposition ; carbon nanotube ; humidity sensor ; catalyst support
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:8
  • 期:6
  • 页码:2024-2032
  • 全文大小:2,559 KB
  • 参考文献:[1]Wang, M. Y; Ioccozia, J.; Sun, L.; Lin, C. J.; Lin Z. Q. Inorganic-modified semiconductor TiO2 nanotube arrays for photocatalysis. Energ. Environ. Sci. 2014, 7, 2182鈥?202.View Article
    [2]Favors, Z.; Wang, W.; Bay, H. H.; George, A.; Ozkan, M.; Ozkan, C. S. Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries. Sci. Rep. 2014, 4, 4605鈥?612.
    [3]Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2005, 6, 215鈥?18.View Article
    [4]Hwang, Y. J.; Hahn, C.; Liu, B.; Yang, P. D. Photoelectrochemical properties of TiO2 nanowire arrays: A study of the dependence on length and atomic layer deposition coating. ACS Nano 2012, 6, 5060鈥?069.View Article
    [5]Zheng, Q.; Zhou, B. X.; Bai, J.; Li, L. H.; Jin, Z. J.; Zhang, J. L.; Li, J. H.; Liu, Y. B.; Cai, W. M.; Zhu, X. Y. Self-organized TiO2 nanotube array sensor for the determination of chemical oxygen demand. Adv. Mater. 2008, 20, 1044鈥?049.View Article
    [6]Marichy, C.; Donato, N.; Willinger, M. G.; Latino, M.; Karpinsky, D.; Yu, S. H.; Neri, G.; Pinna, N. Tin dioxide sensing layer grown on tubular nanostructures by a non-aqueous atomic layer deposition process. Adv. Funct. Mater. 2011, 21, 658鈥?66.View Article
    [7]Liu, N.; Chen, X. Y.; Zhang, J. L.; Schwank, J. W. A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catal. Today 2014, 225, 34鈥?1.View Article
    [8]Lee, C. H.; Xie, M.; Kayastha, V.; Wang, J. S.; Yap, Y. K. Patterned growth of boron nitride nanotubes by catalytic chemical vapor deposition. Chem. Mater. 2010, 22, 1782鈥?787.View Article
    [9]M茅traux, C.; Grob茅ty, B. Tellurium nanotubes and nanorods synthesized by physical vapor deposition. J. Mater. Res. 2011, 19, 2159鈥?164.View Article
    [10]Lin, J.; Guo, M.; Yip, C. T.; Lu, W.; Zhang, G. G.; Liu, X. L.; Zhou, L. M.; Chen, X. F.; Huang, H. T. High temperature crystallization of free-standing anatase TiO2 nanotube membranes for high efficiency dye-sensitized solar cells. Adv. Funct. Mater. 2013, 23, 5952鈥?960.View Article
    [11]Mohammadpour, A.; Waghmare, P. R.; Mitra, S. K.; Shankar, K. Anodic growth of large-diameter multipodal TiO2 nanotubes. ACS Nano 2010, 4, 7421鈥?430.View Article
    [12]Miikkulainen, V.; Leskel盲, M.; Ritala, M.; Puurunen, R. L. Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends. J. Appl. Phys. 2013, 113, 021301鈥?21402.View Article
    [13]Marichy, C.; Bechelany, M.; Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 2012, 24, 1017鈥?032.View Article
    [14]Shin, H.; Jeong, D. K.; Lee, J.; Sung, M. M.; Kim, J. Formation of TiO2 and ZrO2 nanotubes using atomic layer deposition with ultraprecise control of the wall thickness. Adv. Mater. 2004, 16, 1197鈥?200.View Article
    [15]Peng, Q.; Sun, X. Y.; Spagnola, J. C.; Hyde, G. K.; Spontak, R. J.; Parsons, G. N. Atomic layer deposition on electrospun polymer fibers as a direct route to Al2O3 microtubes with precise wall thickness control. Nano Lett. 2007, 7, 719鈥?22.View Article
    [16]Gu, D. F.; Baumgart, H.; Namkoong, G.; Abdel-Fattah, T. M. Atomic layer deposition of ZrO2 and HfO2 nanotubes by template replication. Electrochem. Solid-State Lett. 2009, 12, K25鈥揔28.View Article
    [17]Qin, Y.; Vogelgesang, R.; E脽linger, M.; Sigle, W.; van Aken, P. V.; Moutanabbir, O.; Knez, M. Bottom-up tailoring of plasmonic nanopeapods making use of the periodical topography of carbon nanocoil templates. Adv. Funct. Mater. 2012, 22, 5157鈥?165.View Article
    [18]Qin, Y.; Kim, Y.; Zhang, L. B.; Lee, S. M.; Yang, R. B.; Pan, A. L.; Mathwig, K.; Alexe, M.; G枚sele, U.; Knez, M. Preparation and elastic properties of helical nanotubes obtained by atomic layer deposition with carbon nanocoils as templates. Small 2010, 6, 910鈥?14.View Article
    [19]Ras, R. H. A.; Kemell, M.; de Wit, J.; Ritala, M.; ten Brinke, G.; Leskel盲, M.; Ikkala, O. Hollow inorganic nanospheres and nanotubes with tunable wall thicknesses by atomic layer deposition on self-assembled polymeric templates. Adv. Mater. 2007, 19, 102鈥?06.View Article
    [20]Wang, X. D.; Graugnard, E.; King, J. S.; Wang, Z. L.; Summers, C. J. Large-scale fabrication of ordered nanobowl arrays. Nano Lett. 2004, 4, 2223鈥?226.View Article
    [21]Peng, Q.; Sun, X. J.; Spagnola, J. C.; Saquing, C.; Khan, S. A.; Spontak, R. J.; Parsons, G. N. Bi-directional kirkendall effect in coaxial microtube nanolaminate assemblies fabricated by atomic layer deposition. ACS Nano 2009, 3, 546鈥?54.View Article
    [22]Korhonen, J. T.; Hiekkataipale, P.; Malm, J.; Karppinen, M.; Ikkala, O.; Ras, R. H. A. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates. ACS Nano 2011, 5, 1967鈥?974.View Article
    [23]Li, F. B.; Yao, X. P.; Wang, Z. G.; Xing, W. H.; Jin, W. Q.; Huang, J.; Wang, Y. Highly porous metal oxide networks of interconnected nanotubes by atomic layer deposition. Nano Lett. 2012, 12, 5033鈥?038.View Article
    [24]Liu, K.; Sun, Y. H.; Liu, P.; Lin, X. Y.; Fan, S. S.; Jiang, K. L. Cross-stacked superaligned carbon nanotube films for transparent and stretchable conductors. Adv. Funct. Mater. 2011, 21, 2721鈥?728.View Article
    [25]Marichy, C.; Tessonnier, J. P.; Ferro, M. C.; Lee, K. H.; Schl枚gl, R.; Pinna, N.; Willinger, M. G. Labeling and monitoring the distribution of anchoring sites on functionalized CNTs by atomic layer deposition. J. Mater. Chem. 2012, 22, 7323鈥?330.View Article
    [26]Zhang, X. B.; Jiang, K. L.; Feng, C.; Liu, P.; Zhang, L. N.; Kong, J.; Zhang, T. H.; Li, Q. Q.; Fan, S. S. Spinning and processing continuous yarns from 4-inch wafer scale super-aligned carbon nanotube arrays. Adv. Mater. 2006, 18, 1505鈥?510.View Article
    [27]Puurunen, R. L.; Vandervorst, W. Island growth as a growth mode in atomic layer deposition: A phenomenological model. J. Appl. Phys. 2004, 96, 7686鈥?695.View Article
    [28]Farmer, D. B.; Gordon, R. G. Atomic layer deposition on suspended single-walled carbon nanotubes via gas-phase noncovalent functionalization. Nano Lett. 2006, 6, 699鈥?03.View Article
    [29]Gomathi, A.; Vivekchand, S. R. C.; Govindaraj, A.; Rao, C. N. R. Chemically bonded ceramic oxide coatings on carbon nanotubes and inorganic nanowires. Adv. Mater. 2005, 17, 2757鈥?761.View Article
    [30]Willinger, M. G.; Neri, G.; Bonavita, A.; Micali, G.; Rauwel, E.; Herntrich, T.; Pinna, N. The controlled deposition of metal oxides onto carbon nanotubes by atomic layer deposition: Examples and a case study on the application of V2O4 coated nanotubes in gas sensing. Phys. Chem. Chem. Phys. 2009, 11, 3615鈥?622.View Article
    [31]Willinger, M. G.; Neri, G.; Rauwel, E.; Bonavita A.; Micali, G.; Pinna, N. Vanadium oxide sensing layer grown on carbon nanotubes by a new atomic layer deposition process. Nano Lett. 2008, 8, 4201鈥?204.View Article
    [32]Meng, X. B.; Ionescu, M.; Banis, M. N.; Zhong, Y.; Liu, H.; Zhang, Y.; Sun, S. H.; Li, R. Y.; Sun, X. L. Heterostructural coaxial nanotubes of CNT@Fe2O3 via atomic layer deposition: Effects of surface functionalization and nitrogen-doping. J. Nanopart. Res. 2010, 13, 1207鈥?218.View Article
    [33]Kim, U. J.; Liu, X. M; Furtado, C. A.; Chen, G.; Saito, R.; Jiang, J.; Dresselhaus, M. S.; Eklund, P. C. Infrared-active vibrational modes of single-walled carbon nanotubes. Phys. Rev. Lett. 2005, 95, 157402鈥?57406.View Article
    [34]Jiang, K. L.; Wang, J. P.; Li, Q. Q.; Liu, L.; Liu, C. H.; Fan, S. S. Superaligned carbon nanotube arrays, films, and yarns: A road to applications. Adv. Mater. 2011, 23, 1154鈥?161.View Article
    [35]Cheng, B. C.; Tian, B. X.; Xie, C. C.; Xiao, Y. H.; Lei, S. J. Highly sensitive humidity sensor based on amorphous Al2O3 nanotubes. J. Mater. Chem. 2011, 21, 1907鈥?912.View Article
    [36]Stere, C. E.; Adress, W.; Burch, R.; Chansai, S.; Goguet, A.; Graham, W. G.; De Rosa, F.; Palma, V.; Hardacre, C. Ambient temperature hydrocarbon selective catalytic reduction of NOx using atmospheric pressure nonthermal plasma activation of a Ag/Al2O3 catalyst. ACS Catal. 2014, 4, 666鈥?73.View Article
  • 作者单位:He Ma (1)
    Yang Wei (1)
    Jiangtao Wang (1)
    Xiaoyang Lin (1)
    Wenyun Wu (1)
    Yang Wu (1)
    Ling Zhang (1)
    Peng Liu (1)
    Jiaping Wang (1)
    Qunqing Li (1)
    Shoushan Fan (1)
    Kaili Jiang (1)

    1. State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics & Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Aligned carbon nanotube films coated with amorphous carbon were developed into novel templates by atomic layer deposition. Freestanding macroscopic metal-oxide nanotube films were then successfully synthesized by using these templates. The reactive amorphous carbon layer greatly improved the nuclei density, which ensured the high quality of the films and allowed for precise control of the wall thickness of the nanotubes. Using template-synthesized alumina nanotube films, we demonstrate a humidity sensor with a high response speed, a transmission electron microscopy (TEM) grid, and a catalyst support. The cross-stacked assembly, ultrathin thickness, chemical inertness, and high thermal stability of the alumina nanotube films contributed to the excellent performance of these devices. In addition, it is expected that the metal-oxide nanotube films would have significant potential owing to their material richness, macroscopic appearance, flexibility, compatibility with the semiconducting technologies, and the feasibility of mass production.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700