Highly Efficient Derivation of Skeletal Myotubes from Human Embryonic Stem Cells
详细信息    查看全文
  • 作者:Lingjun Rao (1) (3)
    Wenjie Tang (2)
    Youzhen Wei (2)
    Lei Bao (1) (3)
    Jijun Chen (1) (3)
    Haide Chen (3)
    Lixiazi He (1) (3)
    Pengfei Lu (1) (3)
    Jiangtao Ren (1) (3)
    Lu Wu (1) (3)
    Zhidong Luan (4)
    Chun Cui (3)
    Lei Xiao (3)
  • 关键词:Human embryonic stem cells ; Skeletal myotube ; Directed differentiation ; Muscle development ; Tet ; on ; MyoD
  • 刊名:Stem Cell Reviews and Reports
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:8
  • 期:4
  • 页码:1109-1119
  • 全文大小:889KB
  • 参考文献:1. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. / Science, 282, 1145-147. CrossRef
    2. Wu, Z., Li, H., Rao, L., He, L., Bao, L., Liao, J., Cui, C., Zuo, Z., Li, Q., Dai, H., Qian, L., Tian, Q., Xiao, L., & Tan, X. (2011). Derivation and characterization of human embryonic stem cell lines from the Chinese population. / Journal of Genetics and Genomics, 38, 13-0. CrossRef
    3. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. / Nature, 292, 154-56. CrossRef
    4. Xia, X., Ayala, M., Thiede, B. R., & Zhang, S. C. (2008). In vitro- and in vivo-induced transgene expression in human embryonic stem cells and derivatives. / Stem Cells, 26, 525-33. CrossRef
    5. Vieyra, D. S., & Goodell, M. A. (2007). Pluripotentiality and conditional transgene regulation in human embryonic stem cells expressing insulated tetracycline-ON transactivator. / Stem Cells, 25, 2559-566. CrossRef
    6. Zhou, B. Y., Ye, Z., Chen, G., Gao, Z. P., Zhang, Y. A., & Cheng, L. (2007). Inducible and reversible transgene expression in human stem cells after efficient and stable gene transfer. / Stem Cells, 25, 779-89. CrossRef
    7. Dixon, J. E., Dick, E., Rajamohan, D., Shakesheff, K. M., & Denning, C. (2011). Directed differentiation of human embryonic stem cells to interrogate the cardiac gene regulatory network. / Molecular Therapy, 19, 1695-703. CrossRef
    8. Zhang, X., Huang, C. T., Chen, J., Pankratz, M. T., Xi, J., Li, J., Yang, Y., Lavaute, T. M., Li, X. J., Ayala, M., Bondarenko, G. I., Du, Z. W., Jin, Y., Golos, T. G., & Zhang, S. C. (2010). Pax6 is a human neuroectoderm cell fate determinant. / Cell Stem Cell, 7, 90-00. CrossRef
    9. Kattman, S. J., Witty, A. D., Gagliardi, M., Dubois, N. C., Niapour, M., Hotta, A., Ellis, J., & Keller, G. (2011). Stage-specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines. / Cell Stem Cell, 8, 228-40. CrossRef
    10. Koch, P., Opitz, T., Steinbeck, J. A., Ladewig, J., & Brustle, O. (2009). A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. / Proceedings of the National Academy of Sciences of the United States of America, 106, 3225-230. CrossRef
    11. Park, C. H., Minn, Y. K., Lee, J. Y., Choi, D. H., Chang, M. Y., Shim, J. W., Ko, J. Y., Koh, H. C., Kang, M. J., Kang, J. S., Rhie, D. J., Lee, Y. S., Son, H., Moon, S. Y., Kim, K. S., & Lee, S. H. (2005). In vitro and in vivo analyses of human embryonic stem cell-derived dopamine neurons. / Journal Of Neurochemistry, 92, 1265-276. CrossRef
    12. Barberi, T., Willis, L. M., Socci, N. D., & Studer, L. (2005). Derivation of multipotent mesenchymal precursors from human embryonic stem cells. / PLoS Medicine, 2, e161. CrossRef
    13. Barberi, T., Bradbury, M., Dincer, Z., Panagiotakos, G., Socci, N. D., & Studer, L. (2007). Derivation of engraftable skeletal myoblasts from human embryonic stem cells. / Nature Medicine, 13, 642-48. CrossRef
    14. Xiao, L., Yuan, X., & Sharkis, S. J. (2006). Activin A maintains self-renewal and regulates fibroblast growth factor, Wnt, and bone morphogenic protein pathways in human embryonic stem cells. / Stem Cells, 24, 1476-486. CrossRef
    15. Kanisicak, O., Mendez, J. J., Yamamoto, S., Yamamoto, M., & Goldhamer, D. J. (2009). Progenitors of skeletal muscle satellite cells express the muscle determination gene, MyoD. / Developmental Biology, 332, 131-41. CrossRef
    16. Zammit, P. S., Carvajal, J. J., Golding, J. P., Morgan, J. E., Summerbell, D., Zolnerciks, J., Partridge, T. A., Rigby, P. W., & Beauchamp, J. R. (2004). Myf5 expression in satellite cells and spindles in adult muscle is controlled by separate genetic elements. / Developmental Biology, 273, 454-65. CrossRef
    17. Sabourin, L. A., Girgis-Gabardo, A., Seale, P., Asakura, A., & Rudnicki, M. A. (1999). Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. / Journal Of Cell Biology, 144, 631-43. CrossRef
    18. Cornelison, D. D., Olwin, B. B., Rudnicki, M. A., & Wold, B. J. (2000). MyoD(-/-) satellite cells in single-fiber culture are differentiation defective and MRF4 deficient. / Developmental Biology, 224, 122-37. CrossRef
    19. Russo, S., Tomatis, D., Collo, G., Tarone, G., & Tato, F. (1998). Myogenic conversion of NIH3T3 cells by exogenous MyoD family members: dissociation of terminal differentiation from myotube formation. / Journal Of Cell Science, 111(Pt 6), 691-00.
    20. Seale, P., Sabourin, L. A., Girgis-Gabardo, A., Mansouri, A., Gruss, P., & Rudnicki, M. A. (2000). Pax7 is required for the specification of myogenic satellite cells. / Cell, 102, 777-86. CrossRef
    21. Relaix, F., Montarras, D., Zaffran, S., Gayraud-Morel, B., Rocancourt, D., Tajbakhsh, S., Mansouri, A., Cumano, A., & Buckingham, M. (2006). Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. / Journal Of Cell Biology, 172, 91-02. CrossRef
    22. Guo, K., Wang, J., Andres, V., Smith, R. C., & Walsh, K. (1995). MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation. / Molecular And Cellular Biology, 15, 3823-829.
    23. Ott, M. O., Bober, E., Lyons, G., Arnold, H., & Buckingham, M. (1991). Early expression of the myogenic regulatory gene, myf-5, in precursor cells of skeletal muscle in the mouse embryo. / Development, 111, 1097-107.
    24. Walsh, F. S., & Ritter, M. A. (1981). Surface antigen differentiation during human myogenesis in culture. / Nature, 289, 60-4. CrossRef
    25. Barbet, R., Peiffer, I., Hatzfeld, A., Charbord, P., & Hatzfeld, J. A. (2011). Comparison of gene expression in human embryonic stem cells, hESC-derived mesenchymal stem cells and human mesenchymal stem cells. / Stem Cells International, 2011, 368192. CrossRef
    26. Nikolic, N., Skaret, B. S., Tranheim, K. E., Rudberg, I., Flo, H. I., Rustan, A. C., Thoresen, G. H., & Aas, V. (2012). Electrical pulse stimulation of cultured human skeletal muscle cells as an in vitro model of exercise. / PLoS One, 7, e33203. CrossRef
    27. Darabi, R., Arpke, R. W., Irion, S., Dimos, J. T., Grskovic, M., Kyba, M., & Perlingeiro, R. C. (2012). Human ES- and iPS-derived myogenic progenitors restore DYSTROPHIN and improve contractility upon transplantation in dystrophic mice. / Cell Stem Cell, 10, 610-19. CrossRef
  • 作者单位:Lingjun Rao (1) (3)
    Wenjie Tang (2)
    Youzhen Wei (2)
    Lei Bao (1) (3)
    Jijun Chen (1) (3)
    Haide Chen (3)
    Lixiazi He (1) (3)
    Pengfei Lu (1) (3)
    Jiangtao Ren (1) (3)
    Lu Wu (1) (3)
    Zhidong Luan (4)
    Chun Cui (3)
    Lei Xiao (3)

    1. Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, People’s Republic of China
    3. Stem Cell and Developmental Biology Research Center, College of Animal Science, Zhejiang University, 866 Yuhangtang Road, Nongshenghuan Building E#, Room 301, Hangzhou, 310058, People’s Republic of China
    2. Shanghai East Hospital, Tongji University, Shanghai, 200120, People’s Republic of China
    4. Department of Developmental Biology, Liaoning Medical University, Jinzhou, 121001, People’s Republic of China
文摘
Human embryonic stem cells (hESCs) are a promising model for the research of embryonic development and regenerative medicine. Since the first hESC line was established, many researchers have shown that pluripotent hESCs can be directed into many types of functional adult cells in culture. However, most of the reported methods have induced differentiation through the alteration of growth factors in the culture medium. These methods are time consuming; moreover, it is difficult to obtain a pure population of the desired cells because of the low efficiency of induction. In this study, we used a lentiviral-based inducible gene-expression system in hESCs to control the ectopic expression of MyoD, which is an essential transcription factor in skeletal muscle development. The induction of MyoD can efficiently direct the pluripotent hESCs into mesoderm in 24?h. The cells then become proliferated myoblasts and finally form multinucleated myotubes in vitro. The whole procedure took about 10?days, with an induction efficiency of over 90?%. To our knowledge, this is the first time that hESCs have been induced into terminally differentiated cells with only one factor. In the future, these results could be a potential resource for cell therapy for diseases of muscle dysfunction.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700