Synthesis of Fe2O3–TiO2/fly-ash-cenosphere composite and its mechanism of photocatalytic oxidation under visible light
详细信息    查看全文
  • 作者:Jinglin Zhu ; Shaomin Liu ; Jianhua Ge ; Xuetao Guo…
  • 关键词:Fe2O3–TiO2/FAC ; Heterojunction structure ; Photocatalytic oxidation mechanism ; Reactive species
  • 刊名:Research on Chemical Intermediates
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:42
  • 期:4
  • 页码:3637-3654
  • 全文大小:2,005 KB
  • 参考文献:1.P.A. Pekakis, N.P. Xekoukoulotakis, D. Mantzavinos, Treatment of textile dyehouse wastewater by TiO2 photocatalysis. Water Res. 40, 1276–1286 (2006)CrossRef
    2.Y. Ohko, I. Ando, C. Niwa, T. Tatsuma, T. Yamamura, T. Nakashima, Degradation of bisphenol A in water by TiO2 photocatalyst. Environ. Sci. Technol. 35, 2365–2368 (2001)CrossRef
    3.A.R. Khataee, M.N. Pons, O. Zahraa, Photocatalytic degradation of three azo dyes using immobilized TiO2 nanoparticles on glass plates activated by UV light irradiation: influence of dye molecular structure. J. Hazard. Mater. 168, 451–457 (2009)CrossRef
    4.L. Xiao, J. Zhang, Y. Cong, Synergistic effects of doped Fe3+ and deposited Au on improving the photocatalytic activity of TiO2. Catal. Lett. 111, 207–211 (2006)CrossRef
    5.J. Xu, Y. Ao, D. Fu, C. Yuan, Low-temperature preparation of F-doped TiO2 film and its photocatalytic activity under solar light. Appl. Surf. Sci. 254, 3033–3038 (2008)CrossRef
    6.Q. Xiao, J. Zhang, C. Xiao, Z. Si, X. Tan, Solar photocatalytic degradation of methylene blue in carbon-doped TiO2 nanoparticles suspension. Sol. Energy 82, 706–713 (2008)CrossRef
    7.A.V. Rupa, D. Manikandan, D. Divakar, T. Sivakumar, Effect of deposition of Ag on TiO2 nanoparticles on the photodegradation of reactive yellow-17. J. Hazard. Mater. 147, 906–913 (2007)CrossRef
    8.B. Wen, C. Liu, Y. Liu, Optimization of the preparation methods: synthesis of mesostructured TiO2 with high photocatalytic activities. J. Photochem. Photobiol. A 173, 7–12 (2005)CrossRef
    9.Jun Lv, Tong Sheng, Su Lili, Xu Guangqing, Dongmei Wang, Zhixiang Zheng, N, S co-doped-TiO2/fly ash beads composite material and visible light photocatalytic activity. Appl. Surf. Sci. 284, 229–234 (2013)CrossRef
    10.P.K. Surolia, R.J. Tayade, R.V. Jasra, TiO2-coated cenospheres as catalysts for photocatalytic degradation of methylene blue, p-nitroaniline, n-decane, and n-tridecane under solar irradiation. Ind. Eng. Chem. Res. 49, 8908–8919 (2010)CrossRef
    11.P. Huo, Y. Yan, S. Li, H. Li, W. Huang, Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced rhodamine B photodecomposition activity. Desalination 256, 196–200 (2010)CrossRef
    12.D. Wu, P. Huo, Z. Lu, Preparation of heteropolyacid/TiO2/fly-ash-cenosphere photocatalyst for the degradation of ciprofloxacin from aqueous solutions. Appl. Surf. Sci. 258, 7008–7015 (2012)CrossRef
    13.A. Amarjargal, Z. Jiang, L.D. Tijing, C.H. Park, I.T. Im, C.S. Kim, Nanosheet-based alpha-Fe2O3 hierarchical structure decorated with TiO2 nanospheres via a simple one-pot route: magnetically recyclable photocatalysts. J. Alloys Compd. 580, 143–147 (2013)CrossRef
    14.K.H. Choi, S.L. Oh, D.Y. Kim, J.S. Jung, Size dependent photocatalytic activity of photofunctional magnetic core–shell (Fe3O4@TiO2) particles. J. Nanosci. Nanotechnol. 13, 7134–7137 (2013)CrossRef
    15.N. Demir, G. Gündüz, M. Dükkan, Degradation of a textile dye, rhodamine 6G (Rh6G), by heterogeneous sonophotoFenton process in the presence of Fe-containing TiO2 catalysts. Environ. Sci. Pollut. Res. 22, 3193–3201 (2015)CrossRef
    16.L. Deng, S. Wang, D. Liu, Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal. Lett. 129, 513–518 (2009)CrossRef
    17.J. Zhu, J. Ren, Y. Huo, Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol–gel route. J. Phys. Chem. C 111, 18965–18969 (2007)CrossRef
    18.X. Liu, Z. Jin, S. Bu, T. Yin, Influences of solvent on properties of TiO2 porous films prepared by a sol–gel method from the system containing PEG. Sol-Gel Sci. Technol. 36, 103–111 (2005)CrossRef
    19.J. Yu, W. Wang, B. Cheng, B.-L. Su, Enhancement of photocatalytic activity of mesporous TiO2 powders by hydrothermal surface fluorination treatment. J. Phys. Chem. C 113, 6743 (2009)CrossRef
    20.Q. Xiao, Z.C. Si, J. Zhang, C. Xiao, X.K. Tan, Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J. Hazard. Mater. 150, 62–67 (2008)CrossRef
    21.K. Ishibashi, A. Fujishima, T. Watanabe, K. Hashimoto, Quantum yields of active oxidative species formed on TiO2 photocatalyst. J. Photochem. Photobiol. A 134, 139–142 (2000)CrossRef
    22.H. Xu, H.M. Li, C.D. Wu, J.Y. Chu, Y.S. Yan, H.M. Shu, Preparation, characterization and photocatalytic activity of transition metal-loaded BiVO4. Mater. Sci. Eng. B 147, 52–56 (2008)CrossRef
    23.S.B. Wang, Application of solid ash based catalysts in heterogeneous catalysis. Environ. Sci. Technol. 42, 7055–7063 (2008)CrossRef
    24.H.X. Li, X.Y. Zhuang, Y.N. Huo, J. Zhu, Supercritical preparation of a highly active S-doped TiO2 photocatalyst for methylene blue mineralization. Environ. Sci. Technol. 41, 4410–4414 (2007)CrossRef
    25.M. Nair, Z.H. Luo, A. Heller, Rates of photocatalytic oxidation of crude oil on salt water on buoyant, cenosphere-attached titanium dioxide. Ind. Eng. Chem. Res. 32, 2318–2323 (1993)CrossRef
    26.J.F. Zhu, F. Chen, J.L. Zhang, H.J. Chen, M. Anpo, Fe–TiO2 photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. J. Photochem. Photobiol. A 180, 196–204 (2006)CrossRef
    27.J.F. Zhu, W. Zheng, B. He, J.L. Zhang, M. Anpo, Characterization of Fe–TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water. J. Mol. Catal. A Chem. 216, 35–43 (2004)CrossRef
    28.G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, C.A. Grimes, Vertically oriented Ti–Fe–O nanotube array films: toward a useful material architecture for solar spectrum water photoelectrolysis. Nano Lett. 7, 2356–2364 (2007)CrossRef
    29.T. Fujii, F.M.F. de Groot, G.A. Sawatzky, F.C. Voogt, T. Hibma, K. Okada, In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys. Rev. B 59, 3195–3202 (1999)CrossRef
    30.L. Pan, J.J. Zou, X.W. Zhang, L. Wang, Photoisomerization of norbornadiene to quadricyclane using transition metal doped TiO2. Ind. Eng. Chem. Res. 49, 8526–8531 (2010)CrossRef
    31.T. Hirakawa, Y. Nosaka, Properties of O2-and OH-formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions. Langmuir 18, 3247–3254 (2002)CrossRef
    32.M. Yin, Z. Li, J. Kou, Z. Zou, Mechanism investigation of visible light-induced degradation in a heterogeneous TiO2/eosin Y/rhodamine B system. Environ. Sci. Technol. 43, 8361–8366 (2009)CrossRef
    33.Y. Li, J. Wang, H. Yao, L. Dang, Z. Li, Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation. J. Mol. Catal. A Chem. 334, 116–122 (2011)CrossRef
    34.J. Jiang, X. Zhang, P. Sun, ZnO/BiOI heterostructures: photoinduced charge-transfer property and enhanced visible-light photocatalytic activity. J. Phys. Chem. C 115, 20555–20564 (2011)CrossRef
    35.Q. Xiang, J. Yu, M. Jaroniec, Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 7355–7363 (2011)CrossRef
    36.Y. Ma, X.T. Zhang, Z.S. Guan, Y.A. Cao, J.N. Yao, Effects of zinc(II) and iron(III) doping of titania films on their photoreactivity to decompose rhodamine B. J. Mater. Res. 16, 2928–2933 (2001)CrossRef
    37.L.L. Peng, T.F. Xie, Y.C. Lu, H.M. Fan, D.J. Wang, Synthesis, photoelectric properties and photocatalytic activity of the Fe2O3/TiO2 heterogeneous photocatalysts. Phys. Chem. Chem. Phys. 12, 8033–8041 (2010)CrossRef
  • 作者单位:Jinglin Zhu (1)
    Shaomin Liu (1)
    Jianhua Ge (1)
    Xuetao Guo (1)
    Xingming Wang (1)
    Huijun Wu (1)

    1. School of Earth Science and Environmental Engineering, Anhui University of Science and Technology, Huainan, 232001, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Catalysis
    Physical Chemistry
    Inorganic Chemistry
  • 出版者:Springer Netherlands
  • ISSN:1568-5675
文摘
Fe2O3–TiO2/fly-ash-cenosphere (FAC) is a composite photocatalyst that was prepared by depositing Fe2O3 onto floating TiO2/FAC. Scanning electron microscopy, X-ray diffraction analysis, UV–Vis diffuse reflectance spectroscopy, N2 absorption–adsorption, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy were used to characterize the properties of the composites. Results showed that the modified methods could maintain the metastable anatase phase of TiO2. The crystalline phase of Fe2O3 was attributed to hematite. The band gap absorption edge of Fe2O3–TiO2/FAC was approximately 650–700 nm, and the absorption of the photocatalysts had an evident redshift. The composite displayed excellent photocatalytic oxidation activity. The degradation ratio of methylene blue was 86.81 % within 60 min under visible light by using Fe2O3–TiO2/FAC/H2O2. This ratio is 2.25 and 1.38 times higher than those of TiO2/FAC and Fe2O3/FAC, respectively. The excellent catalytic ability was attributed to Fe3+ doping combined with Fe2O3–TiO2 heterojunction structure. Finally, a mechanism for the photocatalytic oxidation was proposed based on experimental results by using Fe2O3–TiO2/FAC under visible light.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700