System-level multi-target drug discovery from natural products with applications to cardiovascular diseases
详细信息    查看全文
  • 作者:Chunli Zheng (1)
    Jinan Wang (1)
    Jianling Liu (2)
    Mengjie Pei (2)
    Chao Huang (1)
    Yonghua Wang (1)
  • 关键词:Systems pharmacology ; Multi ; target drugs ; Cardiovascular diseases ; Natural products ; Polypharmacology
  • 刊名:Molecular Diversity
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:18
  • 期:3
  • 页码:621-635
  • 全文大小:4,612 KB
  • 参考文献:1. Boran AD, Iyengar R (2010) Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Disc 13:297-09. doi:10.1371/journal.pone.0040262
    2. Csermely P, Agoston V, Pongor S (2005) The efficiency of multi-target drugs: the network approach might help drug design. Trends Pharmacol Sci 26:178-82. doi:10.1016/j.tips.2005.02.007 CrossRef
    3. Wist AD, Berger SI, Iyengar R (2009) Systems pharmacology and genome medicine: a future perspective. Genome Med 1:11. doi:10.1186/gm11 CrossRef
    4. Morrow JK, Tian L, Zhang S (2010) Molecular networks in drug discovery. Crit Rev Biomed Eng 38:143-56. doi:10.1615/CritRevBiomedEng.v38.i2.30 CrossRef
    5. Kell D (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11:1085-092. doi:10.1016/j.drudis.2006.10.004 CrossRef
    6. Cascante M, Boros LG, Comin-Anduix B, de Atauri P, Centelles JJ, Lee PW-N (2002) Metabolic control analysis in drug discovery and disease. Nat Biotechnol 20:243-49. doi:10.1038/nbt0302-243 CrossRef
    7. Murthy D, Attri KS, Gokhale RS (2013) Network, nodes and nexus: systems approach to multitarget therapeutics. Curr Opin Biotech 24:1129-136. doi:10.1016/j.copbio CrossRef
    8. Huang C, Zheng C, Li Y, Wang Y, Lu A, Yang L (2013) Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform (in press). doi:10.1093/bib/bbt035
    9. Liu H, Wang J, Zhou W, Wang Y, Yang L (2013) Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice. J Ethnopharmacol 146:773-93. doi:10.1016/j.jep.2013.02.004 CrossRef
    10. Wang X, Xu X, Li Y, Li X, Tao W, Li B, Wang Y, Yang L (2013) Systems pharmacology uncovers Janus functions of botanical drugs: activation of host defense system and inhibition of influenza virus replication. Integr Biol 5:351-71. doi:10.1039/c2ib20204b CrossRef
    11. Li B, Xu X, Wang X, Yu H, Li X, Tao W, Wang Y, Yang L (2012) A systems biology approach to understanding the mechanisms of action of Chinese herbs for treatment of cardiovascular disease. Int J Mol Sci 13:13501-3520. doi:10.3390/ijms131013501 CrossRef
    12. Wang X, Xu X, Tao W, Li Y, Wang Y, Yang L (2012) A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease. Evid-Based Compl Alt (in press). doi:10.1155/2012/519031
    13. Tao W, Xu X, Wang X, Li B, Wang Y, Li Y, Yang L (2012) Network pharmacology-based prediction of the active ingredients and potential targets of Chinese herbal Radix Curcumae formula for application to cardiovascular disease. J Ethnopharmacol 145:1-0. doi:10.1016/j.jep.2012.09.051 CrossRef
    14. Zhou W, Wang Y (2014) A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective: Potential for therapeutics and drug discovery. J Ethnopharmacol 151:66-7. doi:10.1016/j.jep.2013.11.007 CrossRef
    15. Singh N, Guha R, Giulianotti MA, Pinilla C, Houghten RA, Medina-Franco JL (2009) Chemoinformatic analysis of combinatorial libraries, drugs, natural products, and molecular libraries small molecule repository. J Chem Inf Model 49:1010-024. doi:10.1021/ci800426u CrossRef
    16. Austin CP, Brady LS, Insel TR, Collins FS (2004) NIH molecular libraries initiative. Science 306:1138-139. doi:10.1126/science.1105511 CrossRef
    17. Irwin JJ, Shoichet BK (2005) ZINC-a free database of commercially available compounds for virtual screening. J Chem Inf Model 45:177-82. doi:10.1021/ci049714+ CrossRef
    18. Ertl P, Roggo S, Schuffenhauer A (2008) Natural product-likeness score and its application for prioritization of compound libraries. J Chem Inf Model 48:68-4. doi:10.1021/ci700286x CrossRef
    19. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25-9. doi:10.1038/75556 CrossRef
    20. Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. Bioinformatics 27:431-32. doi:10.1093/bioinformatics/btq675 CrossRef
    21. Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727-48. doi:10.1006/jmbi.1996.0897 CrossRef
    22. Xu X, Zhang W, Huang C, Li Y, Yu H, Wang Y, Duan J, Ling Y (2012) A novel chemometric method for the prediction of human oral bioavailability. Int J Mol Sci 13:6964-982. doi:10.3390/ijms13066964 CrossRef
    23. Yamanishi Y, Kotera M, Kanehisa M, Goto S (2010) Drug-target interaction prediction from chemical, genomic and pharmacological data in an integrated framework. Bioinformatics 26:i246–i254. doi:10.1093/bioinformatics/btq176 CrossRef
    24. Korcsmáros T, Szalay MS, B?de C, Kovács IA, Csermely P (2007) How to design multi-target drugs: target search options in cellular networks. Expert Opin Drug Discov 2:1-0 CrossRef
    25. Barabási A-L, Gulbahce N, Loscalzo J (2011) Network medicine: a network-based approach to human disease. Nat Rev Genet 12:56-8. doi:10.1038/nrg2918 CrossRef
    26. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman W-H, Pagès F, Trajanoski Z, Galon J (2009) ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-093. doi:10.1093/bioinformatics/btp101 CrossRef
    27. Gao F, de Beer VJ, Hoekstra M, Xiao C, Duncker DJ, Merkus D (2010) Both \({\upbeta }\) 1-and \({\upbeta }\) 2-adrenoceptors contribute to feedforward coronary resistance vessel dilation during exercise. Am J Physiol Heart C 298:H921–H929. doi: 10.1152/ajpheart.00135.2009 CrossRef
    28. Yoshioka T, Fujii E, Endo M, Wada K, Tokunaga Y, Shiba N, Hohsho H, Shibuya H, Muraki T (1998) Antiinflammatory potency of dehydrocurdione, a zedoary-derived sesquiterpene. Inflamm Res 47:476-81. doi:10.1007/s000110050361 CrossRef
    29. Pan M-H, Huang T-M, Lin J-K (1999) Biotransformation of curcumin through reduction and glucuronidation in mice. Drug Metab Dispos 27:486-94
    30. Kurahashi K, Fujiwara M (1976) Adrenergic neuron blocking action of dehydrocorydaline isolated from / Corydalis bulbosa. Can J Physiol Pharm 54:287-93. doi:10.1139/y76-042 CrossRef
    31. Xu Z, Chen X, Fu S, Bao J, Dang Y, Huang M, Chen L, Wang Y (2012) Dehydrocorydaline inhibits breast cancer cells proliferation by inducing apoptosis in MCF-7 cells. Am J Chin Med 40:177-85. doi:10.1142/S0192415X12500140 CrossRef
    32. Pujol A, Mosca R, Farrés J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31:115-23. doi:10.1016/j.tips.2009.11.006 CrossRef
    33. Masferrer JL, Zweifel BS, Manning PT, Hauser SD, Leahy KM, Smith WG, Isakson PC, Seibert K (1994) Selective inhibition of inducible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci USA 91:3228-232. doi:10.1073/pnas.91.8.3228 CrossRef
    34. Li N, Liu JY, Qiu H, Harris TR, Sirish P, Hammock BD, Chiamvimonvat N (2011) Use of metabolomic profiling in the study of arachidonic acid metabolism in cardiovascular disease. Congest Heart Fail 17:42-6. doi:10.1111/j.1751-7133.2010.00209.x CrossRef
    35. Wang Y, Liu Z, Li C, Li D, Ouyang Y, Yu J, Guo S, He F, Wang W (2012) Drug target prediction based on the herbs components: the study on the multitargets pharmacological mechanism of qishenkeli acting on the coronary heart disease. Evid Based Complement Altern (in press). doi:10.1155/2012/698531
    36. Ho CY, Seidman CE (2006) A contemporary approach to hypertrophic cardiomyopathy. Circulation 113:e858–e862. doi:10.1161/circulationaha.105.591982 CrossRef
    37. Griendling KK, Murphy T, Alexander RW (1993) Molecular biology of the renin-angiotensin system. Circulation 87:1816-828. doi:10.1161/01.CIR.87.6.1816 CrossRef
    38. Li X, Xu X, Wang J, Yu H, Wang X, Yang H, Xu H, Tang S, Li Y, Yang L (2012) A system-level investigation into the mechanisms of chinese traditional medicine: compound danshen formula for cardiovascular disease treatment. PLoS One 7:e43918. doi:10.1371/journal.pone.0043918 CrossRef
    39. Ma XH, Shi Z, Tan C, Jiang Y, Go ML, Low BC, Chen YZ (2010) In-silico approaches to multi-target drug discovery. Pharm Res 27:739-49. doi:10.1007/s11095-010-0065-2 CrossRef
    40. Cheng TO (2007) Cardiovascular effects of Danshen. Int J Cardiol 121:9-2. doi:10.1016/j.ijcard.2007.01.004 CrossRef
    41. Konik E, Kurtz E, Sam F, Sawyer D (2012) Coronary artery spasm, hypertension, hypokalemia and licorice. J Clin Case Rep 2:143. doi:10.4172/2165-7920.1000143
    42. Lü D-Y, Cao Y, Li L, Zhu Z-Y, Dong X, Zhang H, Chai Y-F, Lou Z-Y (2011) Comparative analysis of essential oils found in Rhizomes Curcumae and Radix Curcumae by gas chromatography-mass spectrometry. J Pharm Anal 1:203-07. doi:10.1016/j.jpha.2011.05.001
    43. Fan HY, Fu FH, Yang MY, Xu H, Zhang AH, Liu K (2010) Antiplatelet and antithrombotic activities of salvianolic acid A. Thromb Res 126:e17–e22. doi:10.1016/j.thromres.2010.04.006 CrossRef
    44. Kim YH, Shin EK, Kim DH, Lee HH, Park JHY, Kim J-K (2010) Antiangiogenic effect of licochalcone A. Biochem Pharmacol 80:1152-159. doi:10.1016/j.bcp.2010.07.006 CrossRef
    45. Kim M, Kim Y (2010) Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract 4:191-95. doi:10.4162/nrp.2010.4.3.191 CrossRef
    46. Xie L, Evangelidis T, Xie L, Bourne PE (2011) Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir. PLoS Comput Biol 7:e1002037. doi:10.1371/journal.pcbi.1002037 CrossRef
    47. Wang J-G, Staessen JA (2000) Genetic polymorphisms in the renin-angiotensin system: relevance for susceptibility to cardiovascular disease. Eur J Pharmacol 410:289-02. doi:10.1016/S0014-2999(00)00822-0 CrossRef
    48. Bai JP, Abernethy DR (2013) Systems pharmacology to predict drug toxicity: integration across levels of biological organization. Annu Rev Pharmacol 53:451-73. doi:10.1146/annurev-pharmtox-011112-140248 CrossRef
    49. Serena DT, Gianni C, Valentina C, Mauro G, Tiziana C, Chiara S, Simone N, Barbara M, Giuseppina B, Virgilio M (2013) Cytocompatibility evaluation of glycol-chitosan coated boron nitride nanotubes in human endothelial cells. Colloids Surf B Biointerfaces 111:142-49. doi:10.1016/j.colsurfb.2013.05.031 CrossRef
    50. Xiong X, Yang X, Liu Y, Zhang Y, Wang P, Wang J (2013) Chinese herbal formulas for treating hypertension in traditional Chinese medicine: perspective of modern science. Hypertens Res 36:570-79. doi:10.1038/hr.2013.18 CrossRef
    51. Webb NJ, Bottomley MJ, Watson CJ, Brenchley PE (1998) Vascular endothelial growth factor (VEGF) is released from platelets during blood clotting: implications for measurement of circulating VEGF levels in clinical disease. Clin Sci 94:395-04. doi:10.1042/cs0940395
    52. Thomas T, Advani A (2006) Inflammation in cardiovascular disease and regulation of the actin cytoskeleton in inflammatory cells: the actin cytoskeleton as a target. Cardiovasc Hematol Agents Med Chem 4:165-82. doi:10.2174/187152506776369926 CrossRef
  • 作者单位:Chunli Zheng (1)
    Jinan Wang (1)
    Jianling Liu (2)
    Mengjie Pei (2)
    Chao Huang (1)
    Yonghua Wang (1)

    1. Center of Bioinformatics, College of Life Science, Northwest A&F University, Yangling, Shaanxi, China
    2. College of Life Science, Northwest University, Xi’an, Shaanxi, China
  • ISSN:1573-501X
文摘
The term systems pharmacology describes a field of study that uses computational and experimental approaches to broaden the view of drug actions rooted in molecular interactions and advance the process of drug discovery. The aim of this work is to stick out the role that the systems pharmacology plays across the multi-target drug discovery from natural products for cardiovascular diseases (CVDs). Firstly, based on network pharmacology methods, we reconstructed the drug–target and target–target networks to determine the putative protein target set of multi-target drugs for CVDs treatment. Secondly, we reintegrated a compound dataset of natural products and then obtained a multi-target compounds subset by virtual-screening process. Thirdly, a drug-likeness evaluation was applied to find the ADME-favorable compounds in this subset. Finally, we conducted in vitro experiments to evaluate the reliability of the selected chemicals and targets. We found that four of the five randomly selected natural molecules can effectively act on the target set for CVDs, indicating the reasonability of our systems-based method. This strategy may serve as a new model for multi-target drug discovery of complex diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700