Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel
详细信息    查看全文
  • 作者:Qiang Zhang ; Jianmin Han ; Caiwang Tan…
  • 关键词:EBSD ; electron beam welding ; high ; strength steel ; microstructure
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:25
  • 期:12
  • 页码:5522-5529
  • 全文大小:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Characterization and Evaluation of Materials; Tribology, Corrosion and Coatings; Quality Control, Reliability, Safety and Risk; Engineering Design;
  • 出版者:Springer US
  • ISSN:1544-1024
  • 卷排序:25
文摘
Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700