Association of polygalacturonase-inhibiting protein gene 2 (MsPGIP2) to common leaf spot resistance in alfalfa
详细信息    查看全文
  • 作者:Zhi Gui ; Jianming Gao ; Nan Xin ; Yu Wang ; Yongshuo Pi…
  • 关键词:Lucerne ; PGIPs ; Association ; Common leaf spot ; SNPs ; FSSCP
  • 刊名:European Journal of Plant Pathology
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:144
  • 期:2
  • 页码:245-256
  • 全文大小:836 KB
  • 参考文献:Buza, N. L., Krinitsyna, A. A., Protsenko, M. A., & Vartapetyan, V. V. (2004). Role of the polygalacturonidase inhibitor protein in the ripening of apples and their resistance to Monilia fructigena, a causative agent of fruit rot. Applied Biochemistry and Microbiology, 40, 89鈥?2.CrossRef
    Cuesta-Marcos, A., Sz艖cs, P., Close, T. J., Filichkin, T., Muehlbauer, G. J., Smith, K. P., & Hayes, P. M. (2010). Genome-wide SNPs and re-sequencing of growth habit and inflorescence genes in barley: implications for association mapping in germplasm arrays varying in size and structure. BMC Genomics, 11, 707.PubMedCentral PubMed CrossRef
    D鈥橭vidio, R., Mattei, B., Robertia, S., & Bellincampib, D. (2004). Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions. Biochimica et Biophysica Acta - Proteins and Proteomics, 1696, 237鈥?44.CrossRef
    Degra, L., Salvi, G., Mariotti, D., de Lorenzo, G., & Cervone, F. J. (1988). A polygalacturonase-inhibiting protein in alfalfa callus cultures. Plant Physiology, 133, 364鈥?66.CrossRef
    Duan, J., & Antezana, M. A. (2003). Mammalian mutation pressure, synonymous codon choice, and mRNA degradation. Journal of Molecular Evolution, 57, 694鈥?01.PubMed CrossRef
    Ferrari, S., Vairo, D., Ausubel, F. M., Cervone, F., & De Lorenzo, G. (2003). Tandemly Duplicated Arabidopsis genes that encode polygalacturonase inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection. Plant Cell, 15, 93鈥?06.PubMedCentral PubMed CrossRef
    Fischer, M., Schreiber, L., Colby, T., Kuckenberg, M., Tacke, E., Hofferber, H. R., Schmidt, J., & Gebhard, C. (2013). Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping. BMC Plant Biology, 13, 113.PubMedCentral PubMed CrossRef
    Fish, W. W. (2005). Polygalacturonase-inhibiting protein activity in cantaloupe fruit as a function of fruit maturation and tissue origin. European Journal of Plant Pathology, 111, 67鈥?6.CrossRef
    Flajoulot, S., Ronfort, J., Baudouin, P., Barre, P., Huguet, T., Huyghe, C., & Julier, B. (2005). Genetic diversity among alfalfa (Medicago sativa) cultivars coming from a single breeding program, using SSR markers. Theoretical and Applied Genetics, 111, 1420鈥?429.PubMed CrossRef
    Flint-Garcia, S. A., Thornsberry, J. M., & Buckler, E. S. (2003). Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 54, 357鈥?74.PubMed CrossRef
    Glinka, E. M., & Protsenko, M. A. (2001). Changes in the activity of polygalacturonase-inhibiting protein during potato development. Russian Journal of Plant Physiology, 48, 770鈥?73.CrossRef
    Gui, Z., Liu, H., Wang, Y., Yuan, Q., Xin, N., Zhang, X., Li, X., Pi, Y., & Gao, J. (2014). Detection of the genetic variation of polygalacturonase-inhibiting protein gene 2 in autotetraploid alfalfa (Medicago sativa) using an improved SSCP technique. Genetics and Molecular Research, 13, 10184鈥?0193.PubMed CrossRef
    Gupta, P. K., Rustgi, S., & Kulwal, P. L. (2005). Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Molecular Biology, 57, 461鈥?85.PubMed CrossRef
    Herrmann, D., Barre, P., Santoni, S., & Julier, B. (2010). Association of a CONSTANS-LIKE gene to flowering and height in autotetraploid alfalfa. Theoretical and Applied Genetics, 121, 865鈥?76.PubMed CrossRef
    Higgins, D., Thompson, J., Gibson, T., Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673鈥?680.PubMedCentral PubMed CrossRef
    Hill, W. G., & Robertson, A. (1968). Linkage disequilibrium in finite populations. Theoretical and Applied Genetics, 38, 226鈥?31.PubMed CrossRef
    Hwang, S. F., Wang, H. P., Gossen, B. D., Chang, K. F., Turnbull, G. D., & Howard, R. J. (2006). Impact of foliar diseases on photosynthesis, protein content and seed yield of alfalfa and efficacy of fungicide application. European Journal of Plant Pathology, 115, 389鈥?99.CrossRef
    Hwang, B. H., Bae, H., Lim, H. S., Kim, K. B., Kim, S. J., Im, M. H., Park, B. S., Kim, D. S., & Kim, J. (2010). Overexpression of polygalacturonase-inhibiting protein 2 (PGIP2) of Chinese cabbage (Brassica rapa ssp. pekinensis) increased resistance to the bacterial pathogen Pectobacterium carotovorum ssp. Carotovorum. Plant Cell, Tissue and Organ Culture, 103, 293鈥?05.CrossRef
    Jannink, J. L., Bink, M. C. A. M., & Jansen, R. C. (2001). Using complex plant pedigrees to map valuable genes. Trends in Plant Science, 6, 337鈥?42.PubMed CrossRef
    Jenczewski, E., Prosperi, J. M., & Ronfort, J. (1999). Differentiation between natural and cultivated populations of Medicago sativa (Leguminosae) from Spain: analysis with random amplified polymorphic DNA (RAPD) markers and comparison to allozymes. Molecular Ecology, 8, 1317鈥?330.PubMed CrossRef
    Julier, B. (2009). A program to test linkage disequilibrium between loci in autotetraploid species. Molecular Ecology Resources, 9, 746鈥?48.PubMed CrossRef
    Kimchi-Sarfaty, C., Oh, J. M., Kim, I. W., Sauna, Z. E., Calcagno, A. M., Ambudkar, S. V., & Gottesman, M. M. (2007). A 鈥渟ilent鈥?polymorphism in the MDR1 gene changes substrate specificity. Science, 315, 525鈥?28.PubMed CrossRef
    Lavner, Y., & Kotlar, D. (2005). Codon bias as a factor in regulating expression via translation rate in the human genome. Gene, 345, 127鈥?38.PubMed CrossRef
    Li, Y., B枚ck, A., Haseneyer, G., Korzun, V., Wilde, P., Sch枚n, C. C., Ankerst, D. P., & Bauer, E. (2011). Association analysis of frost tolerance in rye using candidate genes and phenotypic data from controlled, semi-controlled, and field phenotyping platforms. BMC Plant Biology, 11, 146.PubMedCentral PubMed CrossRef
    Marshall, O. J. (2004). PerlPrimer: cross-platform, graphical primer design for standard, bisulphite and real-time PCR. Bioinformatics, 20, 2471鈥?472.PubMed CrossRef
    Mattei, B., Bemalda, M. S., Federici, L., Roepstorff, P., Cervone, F., & Boffi, A. (2001). Secondary structure and post-translational modifications of the leucine-rich repeat protein PGIP (polygalacturonase-inhibiting protein) from Phaseolus vulgaris. Biochemistry, 40, 569鈥?76.PubMed CrossRef
    Maulik, A., Ghosh, H., & Soumalee, B. (2009). Comparative study of protein-protein interaction observed in polygalacturonase-inhibiting proteins from Phaseolus vulgaris and Glycine max and polygalacturonase from Fusarium moniliforme. BMC Genomics, 10, 3鈥?9.CrossRef
    Michaud, R., Lehman, W. F., & Rumbauch, M. D. (1988). World distribution and historical development. In A. A. Hanson, D. K. Barnes, & R. R. Hill (Eds.), Alfalfa and alfalfa improvement (pp. 25鈥?1). Madison: ASA, CSSA, SSSA.
    Morgan, W. C., & Parbery, D. G. (1980). Depressed fodder quality and increased oestrogenic activity of lucerne infected with Pseudopeziza medicaginis. Australian Journal of Agricultural Research, 31, 1103鈥?110.CrossRef
    Ozeretskovskaya, O. L. (2007a). Endogenous plant or secondary elicitors. In D. Y, V. G. Dzhavakhiya, & T. Korpela (Eds.), Comprehensive and molecular phytopathology (pp. 181鈥?15). Netherlands: Elsevier.
    Ozeretskovskaya, O. L. (2007b). Vertical pathosystem: resistance genes and their products. In Y. Dyakov & O. L. Ozeretskovskaya (Eds.), Comprehensive and molecular phytopathology (pp. 217鈥?45). Netherlands: Elsevier.
    Ozeretskovskaya, O. L. (2007c). Immune response. In V. G. Dzhavakhiya, O. L. Ozeretskovskaya, & S. V. Zinovyeva (Eds.), Comprehensive and molecular phytopathology (pp. 265鈥?14). Netherlands: Elsevier.
    Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in excel population genetic software for teaching and research. Molecular Ecology Notes, 6, 288鈥?95.CrossRef
    Protsenko, M. A., Buza, N. L., Krinitsyna, A. A., Bulantseva, E. A., & Korableva, N. P. (2008). Polygalacturonase_inhibiting protein is a structural component of plant cell wall. Biochemistry, 73, 1053鈥?062.PubMed
    Rafalski, A. (2002). Applications of single nucleotide polymorphisms in crop genetics. Current Opinion in Plant Biology, 5, 94鈥?00.PubMed CrossRef
    Ravel, C., Praud, S., Murigneux, A., Linossier, L., Dardevet, M., Balfourier, F., Dufour, P., Brunel, D., & Charmet, G. (2006). Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theoretical and Applied Genetics, 112, 738鈥?43.PubMed CrossRef
    Sauna, Z. E., Kimchi-Sarfaty, C., Ambudkar, S. V., & Gottesman, M. M. (2007). The sounds of silence: synonymous mutations affect function. Pharmacogenomics, 8, 527鈥?32.PubMed CrossRef
    Shanmugam, V. (2005). Role of extracytoplasmic leucine rich repeat proteins in plant defense mechanisms. Microbiological Research, 160, 83鈥?4.PubMed CrossRef
    Sharma, A., & Chauhan, R. S. (2012). Identification and association analysis of castor bean orthologous candidate gene-based markers for high oil content in Jatropha curcas. Plant Molecular Biology Reporter, 30, 1025鈥?031.CrossRef
    Song, K. H., & Nam, Y. W. (2005). Genomic organization and differential expression of two polygalacturonase-lnhibiting protein genes from Medicago truncatula. Journal of Plant Biology, 48, 467鈥?78.CrossRef
    Sorkheh, K., Malysheva-Otto, L. V., Wirthensohn, M. G., Tarkesh-Esfahani, S., & Martinez-Gomez, P. (2008). Linkage disequilibrium, genetic association mapping and gene localization in crop plants. Genetics and Molecular Biology, 31, 805鈥?14.CrossRef
    Wilson, L. M., Whitt, S. R., Ibanez, A. M., Rocheford, T. R., Goodman, M. M., & Buckler, E. S. (2004). Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell, 16, 2719鈥?733.PubMedCentral PubMed CrossRef
    Yuan, Q., Gao, J., Gui, Z., Wang, Y., Wang, S., Zhao, X., Xia, B., & Li, X. (2011). Genetic relationships among alfalfa gemplasms resistant to common leaf spot and selected Chinese cultivars assessed by sequence-related amplified polymorphism (SARP) markers. African Journal of Biotechnology, 10, 12527鈥?2534.
  • 作者单位:Zhi Gui (1) (2)
    Jianming Gao (1) (2)
    Nan Xin (1)
    Yu Wang (2)
    Yongshuo Pi (1)
    Huiqin Liu (1)
    Qinghua Yuan (2)
    Xianglin Li (2)

    1. The Key Laboratory of Crop Genetics and Breeding, College of Agronomy & Resources and Environment, Tianjin Agricultural University, Tianjin, 300384, People鈥檚 Republic of China
    2. Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing, 100193, People鈥檚 Republic of China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Pathology
    Plant Sciences
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-8469
文摘
Common leaf spot (CLS), which is caused by Pseudopeziza medicaginis (Lib.) Sacc., is one of the most serious fungal diseases occurring in autotetraploid alfalfa (Medicago sativa) worldwide. Polygalacturonase-inhibiting proteins (PGIPs) are important candidate genes for disease resistance studies in plants. The association between an alfalfa PGIP gene, MsPGIP2, and the CLS resistance of alfalfa was tested using a population including 400 plants from 16 cultivars. Direct sequencing detected 21 single-nucleotide polymorphisms (SNPs) with a genotypic frequency > 0.1 over the sequenced fragment of about 635 bp. Linkage disequilibrium (LD) within this region rapidly decreased as expected and no evident structure among the studied population was observed. Two synonymous coding-region SNPs, L458 and L563, revealed weak but significant associations to the CLS resistance, mainly impacting on the spot size. Furthermore, L458 exhibited a greater effect on CLS severity than L563. Fluorescent single-strand conformational polymorphism (FSSCP) marker S331a was found to be associated to CLS resistance, and exclusively contained a favourable base to the CLS resistance in L458. Thus, MsPGIP2 could play a small role in CLS resistance of alfalfa by limiting the extension of disease spots. FSSCP marker S331a could be useful for marker-assisted selection of L458. Keywords Lucerne PGIPs Association Common leaf spot SNPs FSSCP

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700