Heterologous expression of Populus euphratica CPD (PeCPD) can repair the phenotype abnormity caused by inactivated AtCPD through restoring brassinosteroids biosynthesis in Arabidopsis
详细信息    查看全文
  • 作者:Haijun Wu (1)
    Jianping Si (1)
    Duorong Xu (1)
    Gaoshan Lian (1)
    Xinyu Wang (1)
  • 关键词:BR biosynthesis ; cpd mutant ; PeCPD ; Woody plants
  • 刊名:Acta Physiologiae Plantarum
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:36
  • 期:12
  • 页码:3123-3135
  • 全文大小:4,717 KB
  • 参考文献:1. Bancos S, Nomura T, Sato T, Moln谩r G, Bishop GJ, Koncz C, Yokota T, Nagy F, Szekeres M (2002) Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol 130:504鈥?13 CrossRef
    2. Bishop GJ, Harrison K, Jones J (1996) The tomato / dwarf gene isolated by heterologous transposon tagging encodes the first member of a new Cytochrome P450 Family. Plant Cell 8:959鈥?69 CrossRef
    3. Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The / DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22伪-hydroxylation steps in brassinosteroid biosynthesis. Plant cell 10:231鈥?44
    4. Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26(6):573鈥?82 CrossRef
    5. Clough SJ, Bent AF (1998) Floral dip: a simplified method for / Agrobacterium-mediated transformation of / Arabidopsis thaliana. Plant J 16:735鈥?43 CrossRef
    6. Clouse SD, Sasse JM (1998) Brassinosteroids: essential regulators of plant growth and development. Annu Rev Plant Physiol Plant Mol Biol 49:427鈥?51 CrossRef
    7. Du J, Yin H, Zhang S, Wei Z, Zhao B, Zhang J, Gou X, Lin H, Li J (2012) Somatic embryogenesis receptor kinases control root development mainly via brassinosteroid-independent actions in / Arabidopsis thaliana. J Integr Plant Biol 54:388鈥?99 CrossRef
    8. Fujioka S, Choi Y-H, Takatsuto S, Yokota T, Li J, Chory J, Sakurai A (1996) Identification of castasterone, 6-deoxocastasterone, typhasterol and 6-deoxotyphasterol from the shoots of / Arabidopsis thaliana. Plant Cell Physiol 37:1201鈥?203 CrossRef
    9. Fujioka S, Takatsuto S, Yoshida S (2002) An early C-22 oxidation branch in the brassinosteroid biosynthetic pathway. Plant Physiol 130:930鈥?39 CrossRef
    10. Gil P, Liu Y, Orbovic V, Verkamp E, Poff KL, Green PJ (1994) Characterization of the auxin-inducible SAUR-AC1 gene for use as a molecular genetic tool in Arabidopsis. Plant Physiol 104(2):777鈥?84 CrossRef
    11. Goda H, Shimada Y, Asami T, Fujioka S, Yoshida S (2002) Microarray analysis of brassinosteroid-regulated genes in Arabidopsis. Plant Physiol 130(3):1319鈥?334 CrossRef
    12. Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from / Brassica napus pollen. Nature 281:216鈥?17 CrossRef
    13. Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid deficient mutant, ebisu / dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900鈥?910 CrossRef
    14. Jager CE, Symons GM, Nomura T, Yamada Y, Smith JJ, Yamaguchi S, Kamiya Y, Weller JL, Yokota T, Reid JB (2007) Characterization of two brassinosteroid C-6 oxidase genes in pea. Plant Physiol 143:1894鈥?904 CrossRef
    15. Kim G-T, Tsukaya H, Uchimiya H (1998) The / ROTUNDIFOLIA3 gene of / Arabidopsis thaliana encodes a new member of the cytochrome P-450 family that is required for the regulated polar elongation of leafcells. Genes Dev 12:2381鈥?391 CrossRef
    16. Kim G-T, Fujioka S, Kozuka T, Tax FE, Takatsuto S, Yoshida S, Tsukaya H (2005a) CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in / Arabidopsis thaliana. Plant J 41:710鈥?21 CrossRef
    17. Kim T-W, Hwang J-Y, Kim Y-S, Joo S-H, Chang SC, Lee JS, Takatsuto S, Kim S-K (2005b) Arabidopsis CYP85A2, a cytochrome P450, mediates the baeyer-villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell 17:2397鈥?412 CrossRef
    18. Kim HB, Kwon M, Ryu H, Fujioka S, Takatsuto S, Yoshida S, An CS, Lee I, Hwang I, Choe S (2006) The regulation of DWARF4 expression is likely a critical mechanism in maintaining the homeostasis of bioactive brassinosteroids in Arabidopsis. Plant Physiol 140(2):548鈥?57 CrossRef
    19. Lisso J, Steinhauser D, Altmann T, Kopka J, M眉ssig C (2005) Identification of brassinosteroid-related genes by means of transcript co-response analyses. Nucleic Acids Res 33(8):2685鈥?696 CrossRef
    20. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plantarum 15(3):473鈥?97 CrossRef
    21. Nelson DR, Schuler MA, Paquette SM, Werck-Reichhart D, Bak S (2004) Comparative genomics of rice and Arabidopsis. Analysis of 727 cytochrome P450 genes and pseudogenes from a monocot and a dicot. Plant Physiol 135:756鈥?72
    22. Noguchi T, Fujioka S, Choe S, Takatsuto S, Tax FE, Yoshida S, Feldmann KA (2000) Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol 124:201鈥?10 CrossRef
    23. Nomura T, Bishop G (2006) Cytochrome P450s in plant steroid hormone synthesis and metabolism. Phytochem Rev 5:421鈥?32 CrossRef
    24. Nomura T, Nakayama Reid MJB, Takeuchi Y, Yokota T (1997) Blockage of brassinosteroid biosynthesis and sensitivity causes dwarfism in garden pea. Plant Physiol 113:31鈥?7
    25. Ohnishi T, Szatmari A-M, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006) C-23 hydroxylation by arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275鈥?288 CrossRef
    26. Ohnishi T, Yokota T, Mizutani M (2009) Insights into the function and evolution of P450s in plant steroid metabolism. Phytochem 70:1918鈥?929 CrossRef
    27. Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012) CYP90A1/ / CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287:31551鈥?1560 CrossRef
    28. Sakamoto T, Matsuoka M (2006) Characterization of / constitutive photomorphogenesis and dwarfism homologs in rice ( / Oryza sativa L). J Plant Growth Regul 25:245鈥?51 CrossRef
    29. Sakurai A, Fujioka S (1997) Studies on biosynthesis of brassinosteroids. Biosci Biotech Biochem 61:757鈥?62 CrossRef
    30. Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid 6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126(2):770鈥?79
    31. Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ specific expression of brassinosteroid biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131(1):287鈥?97
    32. Szekeres M, N茅meth K, Koncz-K谩lm谩n Z, Mathur J, Kauschmann A, Altmann T, R茅dei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171鈥?82 CrossRef
    33. Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice / dwarf mutant, / dwarf11, with reduced seed length. Plant Cell 17:776鈥?90 CrossRef
    34. Tanaka K, Nakamura Y, Asami T, Yoshida S, Matsuo T, Okamoto S (2003) Physiological roles of brassinosteroids in early growth of Arabidopsis: brassinosteroids have a synergistic relationship with gibberellin as well as auxin in light-grown hypocotyl elongation. J Plant Growth Regul 22(3):259鈥?71
    35. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Denzel MA, Torres QI, Neff MM (2003) CYP72B1 inactivates brassinosteroid hormones: an intersection between photomorphogenesis and plant steroid signal transduction. Plant Physiol 133(4):1643鈥?653
    36. Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23鈥?4
    37. Wu HJ (2012) Cloning and function analysis of / Populus euphratica brassinosteroids biosynthase gene / CPD ( / PeCPD). a Ph.D Dissertation of Lanzhou University
    38. Xu W, Purugganan MM, Polisensky DH, Antosiewicz DM, Fry SC, Braam J (1995) Arabidopsis TCH4, regulated by hormones and the environment, encodes a xyloglucan endotransglycosylase. Plant Cell 7(10):1555鈥?567
    39. Zhao B, Li J (2012) Regulation of brassinosteroid biosynthesis and inactivation. J Integr Plant Biol 54:746鈥?59 CrossRef
  • 作者单位:Haijun Wu (1)
    Jianping Si (1)
    Duorong Xu (1)
    Gaoshan Lian (1)
    Xinyu Wang (1)

    1. Key Laboratory of Cell Activities and Stress Adaptation of Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, 730000, People鈥檚 Republic of China
  • ISSN:1861-1664
文摘
To get insights into the functional difference of CPD (constitutive photomorphogenesis and dwarfism) between herb and woody plants, a full-length Populus euphratica L. cDNA homologous to Arabidopsis thaliana CPD (AtCPD), named PeCPD, was introduced to Arabidopsis thaliana cpd mutant (CM) and corresponding wild type (WT), resulting in a series of CM-PeCPD and WT-PeCPD transgenic lines. All the CM-PeCPD lines differentially displayed evident restoration in phenotype and fertility compared to cpd mutant, but still showed differences from WT in some respects. All the WT-PeCPD lines displayed obvious overexpression phenotype compared to WT plants. The transcription levels (TLs) of PeCPD in the CM-PeCPD lines were positively correlated, and that in the WT-PeCPD lines uncorrelated, with the level of their phenotype restoration/change. In the CM-PeCPD lines, the TLs of AtDWF4, AtBR6OX2 and AtTCH4 were negatively, and of AtBAS1 and AtSAUR-AC1 positively correlated with PeCPD TLs, whereas in the WT-PeCPD lines, their TLs were uncorrelated, and positively or negatively correlated to PeCPD TLs. The level of total endogenous BRs was basically negatively correlated to the level of phenotype restoration/change and PeCPD TLs in the PeCPD transgenic plants. The findings indicate that PeCPD also plays important role in regulation of plant growth and development through participating in BR biosynthesis.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700