Confined growth of CdSe quantum dots in colloidal mesoporous silica for multifunctional nanostructures
详细信息    查看全文
  • 作者:Chunguang Li ; Zhenda Lu ; Qiao Zhang ; Jianping Ge ; Shaul Aloni…
  • 刊名:Science China Materials
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:58
  • 期:6
  • 页码:481-489
  • 全文大小:1077KB
  • 参考文献:1.Murray CB, Norris DJ, Bawendi MG. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc, 1993, 115: 8706-715CrossRef
    2.Han M, Gao X, Su J, Nie S. Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules. Nat Biotechnol, 2001, 19: 631-35CrossRef
    3.Alivisatos AP. Semiconductor clusters, nanocrystals, and quantum dots. Science, 1996, 271: 933-37CrossRef
    4.Bruchez M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science, 1998, 281: 2013-016CrossRef
    5.Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodispersenanocrystals and close-packed nanocrystalassemblies. Ann Rev Mater Sci, 2000, 30: 545-10CrossRef
    6.Chan WCW, Nie SM. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. Science, 1998, 281: 2016-018CrossRef
    7.Mattoussi H, Mauro JM, Goldman ER, et al. Self-assembly of CdSe- ZnS quantum dot bioconjugates using an engineered recombinant protein. J Am Chem Soc, 2000, 122: 12142-2150CrossRef
    8.Selvan ST, Patra PK, Ang CY, Ying JY. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells. Angew Chem Int Ed, 2007, 46: 2448-452CrossRef
    9.Selvan ST, Tan TT, Ying JY. Robust, non-cytotoxic, silica-coated CdSe quantum dots with efficient photoluminescence. Adv Mater, 2005, 17: 1620-625CrossRef
    10.Nann T, Mulvaney P. Single quantum dots in spherical silica particles. Angew Chem Int Ed, 2004, 43: 5393-396CrossRef
    11.Gao XH, Nie SM. Quantum dot-encoded mesoporous beads with high brightness and uniformity: rapid readout using flow cytometry. Anal Chem, 2004, 76: 2406-410CrossRef
    12.Song T, Zhang Q, Lu C, et al. Structural design and preparation of high-performance QD-encoded polymer beads for suspension arrays. J Mater Chem, 2011, 21: 2169-177CrossRef
    13.Vaidya V, Couzis A, Maldarelli C. Reduction in aggregation and energy transfer of quantum dots incorporated in polystyrene beads by kinetic entrapment due to cross-linking during polymerization. Langmuir, 2015, 31: 3167-179CrossRef
    14.Corato RD, Bigall NC, Ragusa A, et al. Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano, 2011, 5: 1109-121CrossRef
    15.Yang SJ, Nam S, Kim T, et al. Preparation and exceptional lithium anodic performance of porous carbon-coated ZnO quantum dots derived from a metal–organic framework. J Am Chem Soc, 2013, 135: 7394-397CrossRef
    16.Liu H, Wu D, Liu Y, et al. Application of an optosensing chip based on molecularly imprinted polymer coated quantum dots for the highly selective and sensitive determination of sesamol in sesame oils. J Agric Food Chem, 2015, 63: 2545-549CrossRef
    17.Chen PJ, Hu SH, Hung WH, Chen SY, Liu DM. Geometrical confinement of quantum dots in porous nanobeads with ultraefficient fluorescence for cell-specific targeting and bioimaging. J Mater Chem, 2012, 22: 9568-575CrossRef
    18.Bao B, Li F, Li H, et al. pH-responsive dual fluorescent core–shell microspheres fabricated via a one-step emulsion polymerization. J Mater Chem C, 2013, 1: 3802-807CrossRef
    19.Gao X, Nie S. Doping mesoporous materials with multicolor quantum dots. J Phys Chem B, 2003, 107: 11575-1578
    20.Sathe TR, Agrawal A, Nie SM. Mesoporous silica beads embedded with semiconductor quantum dots and iron oxide nanocrystals: dual-function microcarriers for optical encoding and magnetic separation. Anal Chem, 2006, 78: 5627-632CrossRef
    21.Gomez DE, Pastoriza-Santos I, Mulvaney P. Tunable whispering gallery mode emission from quantum-dot-doped microspheres. Small, 2005, 1: 238-41CrossRef
    22.Insin N, Tracy JB, Lee H, et al. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. ACS Nano, 2008, 2: 197-02CrossRef
    23.Ki CD, Emrick T, Chang JY. Preparation of functional nanoporous silica for encapsulation of CdSe nanoparticles. Adv Mater, 2005, 17: 230-33CrossRef
    24.Mokari T, Sertchook H, Aharoni A, et al. Nano@micro: general method for entrapment of nanocrystals in sol-gel-derived composite hydrophobic silica spheres. Chem Mater, 2005, 17: 258-63CrossRef
    25.Zhelev Z, Ohba H, Bakalova R. Single quantum dot-micelles coated with silica shell as potentially non-cytotoxic fluorescent cell tracers. J Am Chem Soc, 2006, 128: 6324-325CrossRef
    26.Ma Y, Li Y, Ma S, Bohn E. Highly bright water-soluble silica coated quantum dots with excellent stability. J Mater Chem B, 2014, 2: 5043-051CrossRef
    27.Stober W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci, 1968, 26: 62-9CrossRef
    28.Zhang Q, Zhang T, Ge J, Yin Y. Permeable silica shell through surface- protected etching. Nano Lett, 2008, 8: 2867-871CrossRef
    29.Zhan
  • 作者单位:Chunguang Li (1) (2)
    Zhenda Lu (2)
    Qiao Zhang (2)
    Jianping Ge (2)
    Shaul Aloni (3)
    Zhan Shi (1)
    Yadong Yin (2)

    1. State Key Laboratory of Inorganic Synthesis & Preparative Chemistry, Jilin University, Changchun, 130012, China
    2. Department of Chemistry, University of California, Riverside, CA, 92521, USA
    3. The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
  • 刊物类别:Materials Science, general; Chemistry/Food Science, general;
  • 刊物主题:Materials Science, general; Chemistry/Food Science, general;
  • 出版者:Science China Press
  • ISSN:2199-4501
文摘
We report a new and convenient strategy for incorporating fluorescent semiconductor nanocrystals into silica hosts for the synthesis of multifunctional nanostructures. Mesoscale porosity was first created in conventional Stber silica spheres by chemical etching under the protection of polymeric ligands. Uniform and highly luminescent CdSe nanocrystals were then directly grown in the porous silica network by reacting the silica spheres in a growth solution at high temperature. The confinement of silica network led to slower nanocrystal growth and subsequently smaller CdSe dots with blue shifted fluorescence compared with those without confinement. The loading number of CdSe nanocrystals can be easily tuned by changing the degree of porosity of the silica. The advantages of this strategy include simplicity as no special surface treatment processes are needed, general applicability to silica hosts of various shapes and sizes, high flexibility in tuning the dimensions of both the active nanocrystals and host particles, and ample opportunities for incorporating multiple functionalities. With the demonstration of a porous Fe3O4@SiO2/CdSe composite structure with combined magnetic and optical properties, we believe this strategy may provide a platform for the fabrication of a large variety of multifunctional composite nanostructures. , CdSe CdSe CdSe, CdSe. : , , Fe3O4@SiO2/CdSe.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700