Enhanced hypoglycemic effect of biotin-modified liposomes loading insulin: effect of formulation variables, intracellular trafficking, and cytotoxicity
详细信息    查看全文
  • 作者:Xingwang Zhang (24) (25)
    Jianping Qi (24)
    Yi Lu (24)
    Xiongwei Hu (24)
    Wei He (24)
    Wei Wu (24)

    24. School of Pharmacy
    ; Key Laboratory of Smart Drug Delivery ; Fudan University ; ; Ministry of Education and PLA ; Shanghai ; 201203 ; People鈥檚 Republic of China
    25. Division of Pharmaceutics
    ; College of Pharmacy ; Jinan University ; Guangzhou ; 510632 ; People鈥檚 Republic of China
  • 关键词:Insulin ; Biotin ; Liposomes ; Hypoglycemic effect ; Oral ; Ligand ; mediated ; Endocytosis ; Cytotoxicity
  • 刊名:Nanoscale Research Letters
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:9
  • 期:1
  • 全文大小:1,089 KB
  • 参考文献:1. Philip, S, Howat, I, Carson, M, Booth, A, Campbell, K, Grant, D, Patterson, C, Schofield, C, Bevan, J, Patrick, A, Leese, G, Connell, J (2013) An audit of growth hormone replacement for GH-deficient adults in Scotland. Clin Endocrinol (Oxf) 78: pp. 571-576 CrossRef
    2. Pina, G, Dubois, S, Murat, A, Berger, N, Niccoli, P, Peix, JL, Cohen, R, Guillausseau, C, Charrie, A, Chabre, O, Cornu, C, Borson-Chazot, F, Rohmer, V, Endocrines, GT (2013) Is basal ultrasensitive measurement of calcitonin capable of substituting for the pentagastrin-stimulation test?. Clin Endocrinol (Oxf) 78: pp. 358-364 CrossRef
    3. Murugesan, SV, Steele, IA, Dimaline, R, Poston, GJ, Shrotri, M, Campbell, F, Varro, A, Pritchard, DM (2013) Correlation between a short-term intravenous octreotide suppression test and response to antrectomy in patients with type-1 gastric neuroendocrine tumours. Eur J Gastroenterol Hepatol 25: pp. 474-481
    4. Tibaldi, JM (2013) The future of insulin therapy for patients with type 2 diabetes mellitus. J Am Osteopath Assoc 113: pp. S29-S39
    5. Jin, X, Zeng, L, Zhang, S, He, SR, Ren, Y, Chen, YN, Wei, LL, Wang, L, Li, HX, Cheng, JQ, Lu, YR (2013) Human insulin versus porcine insulin in rhesus monkeys with diabetes mellitus. J Med Primatol 42: pp. 1-9 CrossRef
    6. Rekha, MR, Sharma, CP (2013) Oral delivery of therapeutic protein/peptide for diabetes鈥揻uture perspectives. Int J Pharm 440: pp. 48-62 CrossRef
    7. Sharma, G, Wilson, K, van der Walle, CF, Sattar, N, Petrie, JR, Ravi Kumar, MN (2010) Microemulsions for oral delivery of insulin: design, development and evaluation in streptozotocin induced diabetic rats. Eur J Pharm Biopharm 76: pp. 159-169 CrossRef
    8. Zhang, YL, Wei, W, Lv, PP, Wang, LY, Ma, GH (2011) Preparation and evaluation of alginate-chitosan microspheres for oral delivery of insulin. Eur J Pharm Biopharm 77: pp. 11-19 CrossRef
    9. Lee, E, Lee, J, Jon, S (2010) A novel approach to oral delivery of insulin by conjugating with low molecular weight chitosan. Bioconjug Chem 21: pp. 1720-1723 CrossRef
    10. Chen, MC, Sonaje, K, Chen, KJ, Sung, HW (2011) A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 32: pp. 9826-9838 CrossRef
    11. Pardakhty, A, Moazeni, E, Varshosaz, J, Hajhashemi, V, Najafabadi, AR (2011) Pharmacokinetic study of niosome-loaded insulin in diabetic rats. J Pharm Sci 19: pp. 404-411
    12. Zhang, N, Ping, QN, Huang, GH, Xu, WF (2005) Investigation of lectin-modified insulin liposomes as carriers for oral administration. Int J Pharm 294: pp. 247-259 CrossRef
    13. Makhlof, A, Fujimoto, S, Tozuka, Y, Takeuchi, H (2011) In vitro and in vivo evaluation of WGA-carbopol modified liposomes as carriers for oral peptide delivery. Eur J Pharm Biopharm 77: pp. 216-224 CrossRef
    14. Jain, SK, Amit, KC, Chalasani, KB, Jain, AK, Chourasia, MK, Jain, A, Jain, NK (2007) Enzyme triggered pH sensitive liposomes for insulin delivery. J Drug Deliv Sci Technol 17: pp. 399-405
    15. Peppas, NA, Kavimandan, NJ (2006) Nanoscale analysis of protein and peptide absorption: insulin absorption using complexation and pH-sensitive hydrogels as delivery vehicles. Eur J Pharm Sci 29: pp. 183-197 CrossRef
    16. Hamman, JH, Demana, PH, Olivier, EI (2007) Targeting receptors, transporters and site of absorption to improve oral drug delivery. Drug Target Insights 2: pp. 71-81
    17. Xu, S, Olenyuk, BZ, Okamoto, CT, Hamm-Alvarez, SF (2013) Targeting receptor-mediated endocytotic pathways with nanoparticles: rationale and advances. Adv Drug Del Rev 65: pp. 121-138 CrossRef
    18. Russell-Jones, GJ (2004) Use of targeting agents to increase uptake and localization of drugs to the intestinal epithelium. J Drug Target 12: pp. 113-123 CrossRef
    19. Francis, MF, Cristea, M, Winnik, FM (2005) Exploiting the vitamin B-12 pathway to enhance oral drug delivery via polymeric micelles. Biomacromolecules 6: pp. 2462-2467 CrossRef
    20. Petrus, AK, Fairchild, TJ, Doyle, RP (2009) Traveling the vitamin B12 pathway: oral delivery of protein and peptide drugs. Angew Chem Int Ed 48: pp. 1022-1028 CrossRef
    21. des Rieux, A, Pourcelle, V, Cani, PD, Marchand-Brynaert, J, Preat, V (2013) Targeted nanoparticles with novel non-peptidic ligands for oral delivery. Adv Drug Del Rev 65: pp. 833-844 CrossRef
    22. Jain, SK, Chalasani, KB, Russell-Jones, GJ, Yandrapu, SK, Diwan, PV (2007) A novel vitamin B-12-nanosphere conjugate carrier system for peroral delivery of insulin. J Control Release 117: pp. 421-429 CrossRef
    23. Chatterjee, NS, Kumar, CK, Ortiz, A, Rubin, SA, Said, HM (1999) Molecular mechanism of the intestinal biotin transport process. Am J Physiol Cell Physiol 277: pp. C605-C613
    24. Larrieta, E, Vega-Monroy, ML, Vital, P, Aguilera, A, German, MS, Hafidi, ME, Fernandez-Mejia, C (2012) Effects of biotin deficiency on pancreatic islet morphology, insulin sensitivity and glucose homeostasis. J Nutr Biochem 23: pp. 392-399 CrossRef
    25. Youn, YS, Chae, SY, Lee, S, Kwon, MJ, Shin, HJ, Lee, KC (2008) Improved peroral delivery of glucagon-like peptide-1 by site-specific biotin modification: design, preparation, and biological evaluation. Eur J Pharm Biopharm 68: pp. 667-675 CrossRef
    26. Kim, JH, Li, Y, Kim, MS, Kang, SW, Jeong, JH, Lee, DS (2012) Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. Int J Pharm 427: pp. 435-442 CrossRef
    27. Mirochnik, Y, Rubenstein, M, Guinan, P (2007) Targeting of biotinylated oligonucleotides to prostate tumors with antibody-based delivery vehicles. J Drug Target 15: pp. 342-350 CrossRef
    28. Yellepeddi, VK, Kumar, A, Maher, DM, Chauhan, SC, Vangara, KK, Palakurthi, S (2011) Biotinylated PAMAM dendrimers for intracellular delivery of cisplatin to ovarian cancer: role of SMVT. Anticancer Res 31: pp. 897-906
    29. Lee, ES, Na, K, Bae, YH (2005) Super pH-sensitive multifunctional polymeric micelle. Nano Lett 5: pp. 325-329 CrossRef
    30. Zhang, X, Qi, J, Lu, Y, He, W, Li, X, Wu, W (2014) Biotinylated liposomes as potential carriers for the oral delivery of insulin. Nanomedicine 10: pp. 167-176 CrossRef
    31. Niu, M, Lu, Y, Hovgaard, L, Guan, P, Tan, Y, Lian, R, Qi, J, Wu, W (2012) Hypoglycemic activity and oral bioavailability of insulin-loaded liposomes containing bile salts in rats: the effect of cholate type, particle size and administered dose. Eur J Pharm Biopharm 81: pp. 265-272 CrossRef
    32. Niu, M, Lu, Y, Hovgaard, L, Wu, W (2011) Liposomes containing glycocholate as potential oral insulin delivery systems: preparation, in vitro characterization, and improved protection against enzymatic degradation. Int J Nanomedicine 6: pp. 1155-1166 CrossRef
    33. Degim, IT, Gumusel, B, Degim, Z, Ozcelikay, T, Tay, A, Guner, S (2006) Oral administration of liposomal insulin. J Nanosci Nanotechnol 6: pp. 2945-2949 CrossRef
    34. Bittman, R, Blau, L (1972) The phospholipid-cholesterol interaction. Kinetics of water permeability in liposomes. Biochemistry 11: pp. 4831-4839 CrossRef
    35. Ohta, S, Inasawa, S, Yamaguchi, Y (2012) Real time observation and kinetic modeling of the cellular uptake and removal of silicon quantum dots. Biomaterials 33: pp. 4639-4645 CrossRef
  • 刊物主题:Nanotechnology; Nanotechnology and Microengineering; Nanoscale Science and Technology; Nanochemistry; Molecular Medicine;
  • 出版者:Springer US
  • ISSN:1556-276X
文摘
Peroral protein/peptide delivery has been one of the most challenging, but encouraging topics in pharmaceutics. This article was intended to explore the potential of biotin-modified liposomes (BLPs) as oral insulin delivery carriers. By incorporating biotin-DSPE into the lipid bilayer, we prepared BLPs using reverse evaporation/sonication method. We investigated hypoglycemic effects in normal rats after oral administration of BLPs, and the possible absorption mechanism by a series of in vitro tests. The relative pharmacological bioavailability of BLPs was up to 11.04% that was as much as 5.28 folds of conventional liposomes (CLPs). The results showed that the enhanced oral absorption of insulin mainly attributed to biotin ligand-mediated endocytosis. The results provided proof of BLPs as effective carriers for oral insulin delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700