Realization of Fanolike Resonance Due to Diffraction Coupling of Localized Surface Plasmon Resonances in Embedded Nanoantenna Arrays
详细信息    查看全文
  • 作者:Jing Chen (1) (2)
    Rongqing Xu (1) (2)
    Peng Mao (3)
    Yuting Zhang (1) (2)
    Yuanjian Liu (1) (2)
    Chaojun Tang (4)
    Jianqiang Liu (5)
    Tao Chen (1)

    1. College of Electronic Science and Engineering
    ; Nanjing University of Posts and Telecommunications ; Nanjing ; 210023 ; China
    2. Key Laboratory of Radio Frequency and Micro-Nano Electronics of Jiangsu Province
    ; Nanjing ; 210023 ; Jiangsu ; China
    3. National Laboratory of Solid State Microstructures
    ; Nanjing University ; Nanjing ; 210093 ; China
    4. Department of Applied Physics
    ; Zhejiang University of Technology ; Hangzhou ; 310023 ; China
    5. School of Science
    ; Jiujiang University ; Jiujiang ; 332005 ; China
  • 关键词:Fanolike resonance ; Embedded nanoantenna arrays ; Localized surface plasmon resonance ; In ; plane propagating collective surface mode
  • 刊名:Plasmonics
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:10
  • 期:2
  • 页码:341-346
  • 全文大小:847 KB
  • 参考文献:1. Kreibig, U, V枚llmer, M (1995) Optical properties of metal clusters. Springer, Berlin CrossRef
    2. Mao, P, Chen, J, Xu, RQ, Xie, GZ, Liu, YJ, Gao, GH, Wu, S (2014) Self-assembled silver nanoparticles: correlation between structural and surface plasmon resonance properties. Appl Phys A 117: pp. 1067-1073 CrossRef
    3. Ozbay, E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311: pp. 189-193 CrossRef
    4. Lal, S, Link, S, Halas, NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1: pp. 641-648 CrossRef
    5. Stockman, MI, Shalaev, VM, Moskovits, M, Botet, R, George, TF (1992) Enhanced Raman scattering by fractal clusters: scale invariant theory. Phys Rev B 46: pp. 2821-2830 CrossRef
    6. Kneipp, K, Wang, Y, Kneipp, H, Perelman, LT, Itzkan, I, Dasari, RR, Feld, MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78: pp. 1667-1670 CrossRef
    7. Chen, J, Xu, RQ, Yan, ZD, Tang, CJ, Chen, Z, Wang, ZL (2013) Preparation of metallic triangular nanoparticle array with controllable interparticle distance and its application in surface-enhanced Raman spectroscopy. Opt Commun 307: pp. 73-75 CrossRef
    8. Adato, R, Yanik, AA, Amsden, JJ, Kaplan, DL, Omenetto, FG, Hong, MK, Erramilli, S, Altug, H (2009) Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci 106: pp. 19227-19232 CrossRef
    9. Neubrech, F, Pucci, A, Cornelius, TW, Karim, S, Garc铆a-Etxarri, A, Aizpurua, J (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101: pp. 157403 CrossRef
    10. S谩nchez, EJ, Novotny, L, Xie, XS (1999) Near-field fluorescence microscopy based on two-photon excitation with metal tips. Phys Rev Lett 82: pp. 4014-4017 CrossRef
    11. Jiang, H, Gordon, R (2013) Nonlinear plasmonics: four-photon near-field photolithography using optical antennas. Plasmonics 8: pp. 1655-1665 CrossRef
    12. Ferry, VE, Sweatlock, LA, Pacifici, D, Atwater, HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8: pp. 4391-4397 CrossRef
    13. Atwater, HA, Polman, A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9: pp. 205-213 CrossRef
    14. Nasser, H, Saleh, ZM, Ozkol, E, Gunoven, M, Bek, A, Turan, R (2013) Fabrication of Ag nanoparticles embedded in Al:ZnO as potential light-trapping plasmonic interface for thin film solar cells. Plasmonics 8: pp. 1485-1492 CrossRef
    15. Linden, S, Kuhl, J, Giessen, H (2001) Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 86: pp. 4688-4691 CrossRef
    16. Gantzounis, G, Stefanou, N, Papanikolaou, N (2008) Optical properties of periodic structures of metallic nanodisks. Phys Rev B 77: pp. 035101-035107 CrossRef
    17. Haynes, CL, McFarland, AD, Zhao, L, Duyne, RP, Schatz, GC, Gunnarsson, L, Prikulis, L, Kasemo, B, Kall, M (2003) Nanoparticle optics: the importance of radiative dipole coupling in two-dimensional nanoparticle arrays. J Phys Chem B 107: pp. 7337-7342 CrossRef
    18. Bouhelier, A, Bachelot, R, Im, JS, Wiederrecht, GP, Lerondel, G, Kostcheev, S, Royer, P (2005) Electromagnetic interactions in plasmonic nanoparticle arrays. J Phys Chem B 109: pp. 3195-3198 CrossRef
    19. Zou, S, Janel, N, Schatz, GC (2004) Silver nanoparticle array structures that produce remarkably narrow plasmon lineshapes. J Chem Phys 120: pp. 10871-10875 CrossRef
    20. Zou, S, Schatz, GC (2006) Theoretical studies of plasmon resonances in one dimensional nanoparticles chains: narrow lineshapes with tunable widths. Nanotechnology 17: pp. 2813-2820 CrossRef
    21. Garc铆a de Abajo, FJ (2007) Colloquium: light scattering by particle and hole arrays. Rev Mod Phys 79: pp. 1267-1290 CrossRef
    22. Lamprecht, B, Schider, G, Lechner, RT, Ditlbacher, H, Krenn, JR, Leitner, A, Aussenegg, FR (2000) Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance. Phys Rev Lett 84: pp. 4721-4724 CrossRef
    23. Hicks, EM, Zou, S, Schatz, GC, Spears, KG, Duyne, RP, Gunnarsson, L, Rindzevicius, T, Kasemo, B, K盲ll, M (2005) Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. Nano Lett 5: pp. 1065-1070 CrossRef
    24. Kravets, VG, Schedin, F, Grigorenko, AN (2008) Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. Phys Rev Lett 101: pp. 087403 CrossRef
    25. Augui茅, B, Barnes, WL (2008) Collective resonances in gold nanoparticle arrays. Phys Rev Lett 101: pp. 143902 CrossRef
    26. Vecchi, G, Giannini, V, Rivas, JG (2009) Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas. Phys Rev Lett 102: pp. 146807 CrossRef
    27. Fano, U (1961) Effects of configuration interaction on intensities and phase shifts. Phys Rev 124: pp. 1866-1878 CrossRef
    28. Luk鈥檡anchuk, B, Zheludev, NI, Maier, SA, Halas, NJ, Nordlander, P, Giessen, H, Chong, CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Mater 9: pp. 707-715 CrossRef
    29. Miroshnichenko, AE, Flach, S, Kivshar, YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82: pp. 2257-2298 CrossRef
    30. Kobayashi, K, Aikawa, H, Katsumoto, S, Iye, Y (2002) Tuning of the Fano effect through a quantum dot in an Aharonov-Bohm interferometer. Phys Rev Lett 88: pp. 256806 CrossRef
    31. Rybin, MV, Khanikaev, AB, Inoue, M, Samusev, KB, Steel, MJ, Yushin, G, Limonov, MF (2009) Fano resonance between Mie and Bragg scattering in photonic crystals. Phys Rev Lett 103: pp. 023901 CrossRef
    32. Chen, J, Shen, Q, Chen, Z, Wang, QG, Tang, CJ, Wang, ZL (2012) Multiple Fano resonances in monolayer hexagonal non-close-packed metallic shells. J Chem Phys 136: pp. 214703 CrossRef
    33. Chen, J, Xu, RQ, Liu, ZQ, Tang, CJ, Chen, Z, Wang, ZL (2013) Fabrication and infrared-transmission properties of monolayer hexagonal-close-packed metallic nanoshells. Opt Commun 297: pp. 194-197 CrossRef
    34. Pasquale, AJ, Reinhard, BM, Negro, LD (2011) The near-field properties of nanoplasmonic necklaces have been optimized for plasmon-enhanced spectroscopy and sensing. ACS Nano 5: pp. 6578-6585 CrossRef
    35. Liu, N, Tang, ML, Hentschel, M, Giessen, H, Alivisatos, AP (2011) Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat Mater 10: pp. 631-636 CrossRef
    36. Yannopapas, V, Modinos, A, Stefanou, N (1999) Optical properties of metallodielectric photonic crystals. Phys Rev B 60: pp. 5359-5365 CrossRef
    37. Vecchi, G, Giannini, V, G贸mez Rivas, J (2009) Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas. Phys Rev B 80: pp. 201401(R) CrossRef
    38. Chen, J, Xu, RQ, Mao, P, Liu, YJ, Tang, CJ, Liu, JQ, Zhang, LB (2014) Fanolike resonance in light transmission through a planar array of silver circular disks. Mater Lett 136: pp. 205-208 CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Nanotechnology
    Biophysics and Biomedical Physics
    Biochemistry
  • 出版者:Springer US
  • ISSN:1557-1963
文摘
We present a straightforward method to realize Fanolike resonance due to diffraction coupling of localized surface plasmon (SP) resonances by embedding the nanoantenna arrays into the substrate. Light transmission spectra of the embedded nanoantenna arrays are theoretically studied and show a Fanolike resonance resulting from the interference between localized SP resonances excited on individual plasmonic nanoantennas and an in-plane propagating collective surface mode arising from the array periodicity. The effect can be attributed to the fact that our approach, by embedding the nanoantenna arrays into the substrate, offers a more homogeneous dielectric background allowing stronger diffraction coupling among nanoantennas leading to the Fanolike resonance. Upon the excitation of this Fanolike resonance, a nearly 110 times enhancement of electric fields was achieved as compared with the purely resonance. More importantly, we also found that in addition to the above requirement of homogeneous dielectric background, only a collective surface mode with its electric field parallel to the array plane can mediate the excitation of such a Fanolike resonance. The steep dispersion of the Fano resonance profile and enhanced electric fields obtained in these structures could be attractive for biosensing and nonlinear photonics applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700