Fluid and melt inclusions in the Mesozoic Fangcheng basalt from North China Craton: implications for magma evolution and fluid/melt-peridotite reaction
详细信息    查看全文
  • 作者:He Sun (1)
    Yilin Xiao (1)
    Yongjun Gao (2)
    Jianqing Lai (3)
    Zhenhui Hou (1)
    Yangyang Wang (1)
  • 关键词:Melt/fluid inclusions ; Melt ; peridotite reaction ; Mantle xenoliths ; North China Craton ; Parental melt
  • 刊名:Contributions to Mineralogy and Petrology
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:165
  • 期:5
  • 页码:885-901
  • 全文大小:1251KB
  • 参考文献:1. Andersen T, Neumann ER (2001) Fluid inclusions in mantle xenoliths. Lithos 55(1-):301-20 CrossRef
    2. Andersen T, O’Reilly SY, Griffin WL (1984) The trapped fluid phase in upper mantle xenoliths from Victoria, Australia: implications for mantle metasomatism. Contrib Miner Petrol 88(1):72-5 CrossRef
    3. Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chem Geol 194(1-):3-3 CrossRef
    4. Beccaluva L, Bianchini G, Natali C, Siena F (2009) Continental flood basalts and mantle plumes: a case study of the Northern Ethiopian Plateau. J Petrol 50(7):1377-403 CrossRef
    5. Bodinier JL, Vasseur G, Vernieres J, Dupuy C, Fabries J (1990) Mechanisms of mantle metasomatism—geochemical evidence from the Lherz orogenic peridotite. J Petrol 31(3):597-28 CrossRef
    6. Brearley M, Scarfe CM (1986) Dissolution rates of upper mantle minerals in an alkali basalt melt at high pressure: an experimental study and implications for ultramafic xenolith survival. J Petrol 27(5):1157-182 CrossRef
    7. Brophy JG (1986) The Cold Bay volcanic center, Aleutian volcanic arc. Contrib Miner Petrol 93(3):368-80 CrossRef
    8. Brown PE (1989) FLINCOR: a microcomputer program for the reduction and investigation of fluid-inclusion data. Am Mineralogist 74(11-2):1390-393
    9. Burke EAJ (2001) Raman microspectrometry of fluid inclusions. Lithos 55(1-):139-58 CrossRef
    10. Chiaradia M (2009) Adakite-like magmas from fractional crystallization and melting-assimilation of mafic lower crust (Eocene Macuchi arc, Western Cordillera, Ecuador). Chem Geol 265(3-):468-87 CrossRef
    11. Dobbs PN, Duncan DJ, Hu S, Shee SR, Colgan E, Brown MA, Smith CB, Allsopp HL (1994) The geology of the Mengyin kimberlites, Shandong, China. In: Meyer HOA, Leonardos OH (eds) Diamonds: characterization, genesis and exploration. Proceedings of 5th international Kimb. conference, Vol. 1, pp 106-15
    12. Fan WM, Menzies MA (1992) Destruction of aged lower lithosphere and accretion of asthenosphere mantle beneath eastern China. Geotectonica et Metallogenia 16:171-80
    13. Fan WM, Zhang HF, Baker J, Jarvis KE, Mason PRD, Menzies MA (2000) On and off the North China Craton: where is the Archaean keel? J Petrol 41(7):933-50 CrossRef
    14. Frezzotti M-L (2001) Silicate-melt inclusions in magmatic rocks: applications to petrology. Lithos 55(1-):273-99 CrossRef
    15. Frezzotti ML, Touret JLR, Lustenhouwer WJ, Neumann ER (1994) Melt and fluid inclusions in dunite xenoliths from La Gomera, Canary-Islands—tracking the mantle metasomatic fluids. Eur J Mineral 6(6):805-17
    16. Frezzotti ML, Andersen T, Neumann ER, Simonsen SL (2002) Carbonatite melt-CO2 fluid inclusions in mantle xenoliths from Tenerife, Canary Islands: a story of trapping, immiscibility and fluid-rock interaction in the upper mantle. Lithos 64(3-):77-6 CrossRef
    17. Gaetani GA, Watson EB (2000) Open system behavior of olivine-hosted melt inclusions. Earth Planet Sci Lett 183(1-):27-1 CrossRef
    18. Gao S, Luo TC, Zhang BR, Zhang HF, Han YW, Zhao ZD, Hu YK (1998) Chemical composition of the continental crust as revealed by studies in East China. Geochimica Et Cosmochimica Acta 62(11):1959-975 CrossRef
    19. Gao S, Rudnick RL, Carlson RW, McDonough WF, Liu YS (2002) Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett 198(3-):307-22 CrossRef
    20. Green DH, Ringwood AE (1967) The genesis of basaltic magmas. Contrib Miner Petrol 15(2):103-90 CrossRef
    21. Griffin WL, Andi Z, O’Reilly SY, Ryan CG (1998) Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. Mantle Dyn Plate Interact East Asia 27:107-26 CrossRef
    22. Halter WE, Pettke T, Heinrich CA, Rothen-Rutishauser B (2002) Major to trace element analysis of melt inclusions by laser-ablation ICP-MS: methods of quantification. Chem Geol 183(1-):63-6 CrossRef
    23. Han SL, Stimson ER, Maxfield FR, Scheraga HA (1980) Conformational study of [leu5]-enkephalin by Laser Raman spectroscopy. Int J Pept Protein Res 16(3):173-82 CrossRef
    24. Hansteen TH, Andersen T, Neumann E-R, Jelsma H (1991) Fluid and silicate glass inclusions in ultramafic and mafic xenoliths from Hierro, Canary Islands: implications for mantle metasomatism. Contrib Miner Petrol 107(2):242-54 CrossRef
    25. Heinrich CA, Pettke T, Halter WE, Aigner-Torres M, Audetat A, Gunther D, Hattendorf B, Bleiner D, Guillong M, Horn I (2003) Quantitative multi-element analysis of minerals, fluid and melt inclusions by laser-ablation inductively-coupled-plasma mass-spectrometry. Geochim Cosmochim Acta 67(18):3473-497 CrossRef
    26. Hidas K, Szabo C, Guzmics T, Bali E, Zajacz Z, Kovacs I (2007) Melt/wallrock interaction shown by silicate melt inclusions in peridotite xenoliths from Pannonian Basin. Geochim Cosmochim Acta 71(15):A403–A403
    27. Hidas K, Guzmics T, Szabo C, Kovacs I, Bodnar RJ, Zajacz Z, Nedli Z, Vaccari L, Perucchi A (2010) Coexisting silicate melt inclusions and H2O-bearing, CO2-rich fluid inclusions in mantle peridotite xenoliths from the Carpathian-Pannonian region (central Hungary). Chem Geol 274(1-):1-8 CrossRef
    28. Kelemen PB, Joyce DB, Webster JD, Holloway JR (1990) Reaction between ultramafic rock and fractionating basaltic magma.2. Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150-degrees-C-1050-degrees-C and 5?Kb. J Petrol 31(1):99-34 CrossRef
    29. Kent AJR (2008) Melt inclusions in basaltic and related volcanic rocks. Miner Incl Volcan Process 69:273-31
    30. Kuno H (1950) Petrology of Hakone volcano and the adjacent areas, Japan. Geol Soc Am Bull 61(9):957 CrossRef
    31. Kusky TM, Windley BF, Zhai M-G (2007) Tectonic evolution of the North China Block: from orogen to craton to orogen. Geol Soc Lond Spec Publ 280(1):1-4 CrossRef
    32. Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of greater-than-or-equal-to 3800?Ma crust in the Chinese part of the Sino-Korean Craton. Geology 20(4):339-42 CrossRef
    33. Macpherson CG, Dreher ST, Thirlwall MF (2006) Adakites without slab melting: high pressure differentiation of island arc magma, Mindanao, the Philippines. Earth Planet Sci Lett 243(3-):581-93 CrossRef
    34. Marsh BD (1976) Some Aleutian andesites: their nature and source. J Geol 84(1):27-5 CrossRef
    35. Matzen AK, Baker MB, Beckett JR, Stolper EM (2011) Fe–Mg partitioning between olivine and high-magnesian melts and the nature of hawaiian parental liquids. J Petrol 52(7-):1243-263 CrossRef
    36. McDonough WF, Sun SS (1995) The composition of the Earth. Chem Geol 120:223-53 CrossRef
    37. Menzies MA, Xu YG (1998) Geodynamics of the North China Craton. Mantle Dyn Plate Interact East Asia 27:155-65 CrossRef
    38. Menzies M, Xu YG, Zhang HF, Fan WM (2007) Integration of geology, geophysics and geochemistry: a key to understanding the North China Craton. Lithos 96(1-):1-1 CrossRef
    39. Myers JD, Marsh BD, Sinha AK (1986) Geochemical and strontium isotopic characteristics of parental Aleutian arc magmas: evidence from the basaltic lavas of Atka. Contrib Miner Petrol 94(1):1-1 CrossRef
    40. Nimis P, Taylor WR (2000) Single clinopyroxene thermobarometry for garnet peridotites. Part I. Calibration and testing of a Cr-in-Cpx barometer and an enstatite-in-Cpx thermometer. Contrib Miner Petrol 139(5):541-54 CrossRef
    41. Rapp RP, Watson EB (1995) Dehydration Melting of Metabasalt at 8-2 kbar: implications for Continental Growth and Crust-Mantle Recycling. J Petrol 36(4):891-31 CrossRef
    42. Redfern SAT, Henderson CMB, Wood BJ, Harrison RJ, Knight KS (1996) Determination of olivine cooling rates from metal-cation ordering. Nature 381(6581):407-09 CrossRef
    43. Roedder E (1984) Fluid inclusions, reviews in mineralogy, vol 12. Mineralogy Society of America, Washington
    44. Rudnick RL, Shan G, Ling WL, Liu YS, McDonough WF (2004) Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 77(1-):609-37 CrossRef
    45. Schiano P, Clocchiatti R, Joron JL (1992) Melt and fluid inclusions in basalts and xenoliths from Tahaa-Island, society archipelago—evidence for a metasomatized upper mantle. Earth Planet Sci Lett 111(1):69-2 CrossRef
    46. Schiano P, Clocchiatti R, Shimizu N, Weis D, Mattielli N (1994) Cogenetic silica-rich and carbonate-rich melts trapped in mantle minerals in Kerguelen ultramafic xenoliths: implications for metasomatism in the oceanic upper mantle. Earth Planet Sci Lett 123(1-):167-78
    47. Sisson TW, Grove TL (1993) Experimental investigations of the role of H?<?sub?>2</sub?>O in calc-alkaline differentiation and subduction zone magmatism. Contrib Miner Petrol 113(2):143-66 CrossRef
    48. Streck MJ, Leeman WP, Chesley J (2007) High-magnesian andesite from Mount Shasta: a product of magma mixing and contamination, not a primitive mantle melt. Geology 35(4):351-54 CrossRef
    49. Su L, Song SG, Shu GM (2009) Silicate melt inclusions in olivine from the Yushigou harzburgite, North Qilian: evidence for dynamic partial melting in mantle. Geochim Cosmochim Acta 73(13):A1287–A1287
    50. Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders AD, Norry MJ (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ, pp 313-45
    51. Szabo C, Hidas K, Bali E, Zajacz Z, Kovacs I, Yang K, Guzmics T, Torok K (2009) Melt-wall rock interaction in the mantle shown by silicate melt inclusions in peridotite xenoliths from the central Pannonian Basin (western Hungary). Island Arc 18(2):375-00 CrossRef
    52. Thiery R, van den Kerkhof AM, Dubessy J (1994) vX properties of CH 4 -CO 2 and CO 2 -N 2 fluid inclusions; modelling for T<31 degrees C and P<400 bars. Eur J Mineral 6(6):753-71
    53. Van den Kerkhof AM, Hein UF (2001) Fluid inclusion petrography. Lithos 55(1-):27-7 CrossRef
    54. Wang C, Jin ZM, Gao S, Zhang JF, Zheng S (2010) Eclogite-melt/peridotite reaction: experimental constrains on the destruction mechanism of the North China Craton. Sci China-Earth Sci 53(6):797-09 CrossRef
    55. Wilde SA, Zhou XH, Nemchin AA, Sun M (2003) Mesozoic crust-mantle interaction beneath the North China craton: a consequence of the dispersal of Gondwanaland and accretion of Asia. Geology 31(9):817-20 CrossRef
    56. Wilson DS, Clague DA, Sleep NH, Morton JL (1988) Implications of magma convection for the size and temperature of magma chambers at fast spreading ridges. J Geophys Res 93(B10):11974-1984 CrossRef
    57. Wu FY, Walker RJ, Ren XW, Sun DY, Zhou XH (2003) Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol 196(1-):107-29 CrossRef
    58. Wu F-Y, Lin J-Q, Wilde SA, Zhang XO, Yang J-H (2005a) Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett 233(1-):103-19 CrossRef
    59. Wu FY, Yang JH, Liu XM, Li TS, Xie LW, Yang YH (2005b) Hf isotopes of the 3.8?Ga zircons in eastern Hebei Province, China: implications for early crustal evolution of the North China Craton. Chin Sci Bull 50(21):2473-480 CrossRef
    60. Xu YG (2001) Thermo-tectonic destruction of the archaean lithospheric keel beneath the Sino-Korean Craton in China: evidence, timing and mechanism. Phys Chem Earth Part A Solid Earth Geodesy 26(9-0):747-57 CrossRef
    61. Yan MC, Chi QH (1997) Chemical composition of eastern China crust and crustal rocks. Scientific Press, Beijing (in Chinese)
    62. Yang KF, Liu S, Hu FF, Fan HR (2008) Ore-forming fluids of Saiwusu gold deposit, Inner Mongolia, China. Acta Petrologica Sinica 24(9):2079-084
    63. Ying JF, Zhang HF, Kita N, Morishita Y, Shimoda G (2006) Nature and evolution of late cretaceous lithospheric mantle beneath the eastern North China Craton: constraints from petrology and geochemistry of peridotitic xenoliths from Junan, Shandong Province, China. Earth Planet Sci Lett 244(3-):622-38 CrossRef
    64. Zajacz Z, Halter W (2007) LA-ICPMS analyses of silicate melt inclusions in co-precipitated minerals: quantification, data analysis and mineral/melt partitioning. Geochim Cosmochim Acta 71(4):1021-040 CrossRef
    65. Zhang HF (2005) Transformation of lithospheric mantle through peridotite-melt reaction: a case of Sino-Korean craton. Earth Planet Sci Lett 237(3-):768-80 CrossRef
    66. Zhang HF (2009) Peridotite-melt interaction: a key point for the destruction of cratonic lithospheric mantle. Chin Sci Bull 54(19):3417-437 CrossRef
    67. Zhang HF, Sun M (2002) Geochemistry of mesozoic basalts and mafic dikes, southeastern North China craton, and tectonic implications. Int Geol Rev 44(4):370-82 CrossRef
    68. Zhang HF, Sun M, Zhou XH, Fan WM, Zhai MG, Yin JF (2002) Mesozoic lithosphere destruction beneath the North China Craton: evidence from major-, trace-element and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Miner Petrol 144(2):241-53 CrossRef
    69. Zhang HF, Ying JF, Xu P, Ma YG (2004) Mantle olivine xenocrysts entrained in Mesozoic basalts from the North China craton: implication for replacement process of lithospheric mantle. Chin Sci Bull 49(9):961-66
    70. Zhang HF, Ying JF, Shimoda G, Kita NT, Morishita Y, Shao JA, Tang YH (2007) Importance of melt circulation and crust-mantle interaction in the lithospheric evolution beneath the North China Craton: evidence from Mesozoic basalt-borne clinopyroxene xenocrysts and pyroxenite xenoliths. Lithos 96(1-):67-9 CrossRef
    71. Zhang HF, Goldstein SL, Zhou XH, Sun M, Zheng JP, Cai Y (2008) Evolution of subcontinental lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Miner Petrol 155(3):271-93 CrossRef
    72. Zhang HF, Nakamura E, Kobayashi K, Ying JF, Tang YJ (2010) Recycled crustal melt injection into lithospheric mantle: implication from cumulative composite and pyroxenite xenoliths. Int J Earth Sci 99(6):1167-186 CrossRef
    73. Zhao GC, Wilde SA, Cawood PA, Sun M (2001) Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambr Res 107(1-):45-3 CrossRef
    74. Zhao GC, Sun M, Wilde SA (2002) Reconstruction of a pre-Rodinia supercontinent: new advances and perspectives. Chin Sci Bull 47(19):1585-588
    75. Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambr Res 136(2):177-02 CrossRef
    76. Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M (1998) Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, Sino-Korean craton, eastern China. Int Geol Rev 40(6):471-99 CrossRef
    77. Zheng JP, O’Reilly SY, Griffin WL, Lu FX, Zhang M, Pearson NJ (2001) Relict refractory mantle beneath the eastern North China block: significance for lithosphere evolution. Lithos 57(1):43-6 CrossRef
    78. Zheng JP, Griffin WL, O’Reilly SY, Yang JS, Li TF, Zhang M, Zhang RY, Liou JG (2006) Mineral chemistry of peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantle evolution beneath eastern China. J Petrol 47(11):2233-256 CrossRef
    79. Zhou MF, Robinson PT, Malpas J, Li ZJ (1996) Podiform chromitites in the Luobusa ophiolite (southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37(1):3-1 CrossRef
    80. Zhou MF, Robinson PT, Malpas J, Aitchison J, Sun M, Bai WJ, Hu XF (2001) Melt/mantle interaction and melt evolution in the Sartohay high-Al chromite deposits of the Dalabute ophiolite (NW China). J Asian Earth Sci 19(4):517-34 CrossRef
  • 作者单位:He Sun (1)
    Yilin Xiao (1)
    Yongjun Gao (2)
    Jianqing Lai (3)
    Zhenhui Hou (1)
    Yangyang Wang (1)

    1. CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
    2. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX, 77204-5007, USA
    3. MOE Key Laboratory of Metallogenic Prediction of Nonferrous Metals, School of Geosciences and Info-Physics, Central South University, Changsha, 410083, China
  • ISSN:1432-0967
文摘
Melt inclusions and fluid inclusions in the Fangcheng basalt were investigated to understand the magma evolution and fluid/melt-peridotite interaction. Primary silicate melt inclusions were trapped in clinopyroxene and orthopyroxene phenocrysts in the Fangcheng basalt. Three types of melt inclusions (silicate, carbonate, and sulfide) coexisting with fluid inclusions occur in clinopyroxene xenocrysts and clinopyroxene in clinopyroxenite xenoliths. In situ laser-ablation ICP-MS analyses of major and trace element compositions on individual melt inclusions suggest that the silicate melt inclusions in clinopyroxene and orthopyroxene phenocrysts were trapped from the same basaltic magma. The decoupling of major and trace elements in the melt inclusions indicates that the magma evolution was controlled by melt crystallization and contamination from entrapped ultramafic xenoliths. Trace element patterns of melt inclusions are similar to those of the average crust of North China Craton and Yangtze Craton, suggesting a considerable crustal contribution to the magma source. Calculated parental melt of the Fangcheng basalt has features of low MgO (5.96?wt%), high Al2O3 (16.81?wt%), Sr (1,670?ppm), Y (>35?ppm), and high Sr/Y (>40), implying that subducted crustal material was involved in the genesis of the Fangcheng basalt. The coexisting fluid and melt inclusions in clinopyroxene xenocrysts and in clinopyroxene of xenoliths record a rare melt-peridotite reaction, that is olivine?+?carbonatitic melt1 (rich in Ca)?=?clinopyroxene?+?melt2?±?CO2. The produced melt2 is enriched in LREE and CO2 and may fertilize the mantle significantly, which we consider to be the cause for the rapid replacement of lithospheric mantle during the Mesozoic in the region.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700