A theoretical analysis of torque and superlubric motion in bilayer graphene disks
详细信息    查看全文
  • 作者:Jianwen Li ; Nianhua Liu
  • 关键词:graphene disk ; incommensurate ; superlubricity ; torque ; TB 34
  • 刊名:Wuhan University Journal of Natural Sciences
  • 出版年:2015
  • 出版时间:April 2015
  • 年:2015
  • 卷:20
  • 期:2
  • 页码:173-179
  • 全文大小:563 KB
  • 参考文献:[1]Guo Y F, Guo W L, Chen C F. Modifying atomic-scale friction between two graphene sheets: A molecular-force-field study [J]. Physical Review B, 2007, 76: 155429鈥?55433.View Article
    [2]Kim S Y, Park H S. Multilayer friction and attachment effects on energy dissipation in graphene nanoresonators [J]. Applied Physics Letters, 2009, 94: 101918鈥?01920.View Article
    [3]Filleter T, McChesney J L, Bostwick A, et al. Friction and dissipation in epitaxial graphene films [EB/OL]. [2014-05-16]. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.102.086102.
    [4]Hirano M, Shinjo K. Atomistic locking and friction [J]. Physical Review B, 1990, 41: 11837鈥?1851.View Article
    [5]Hirano M, Shinjo K. Dynamics of friction: Superlubric state [J]. Surface Science, 1993, 283: 473鈥?78.View Article
    [6]Lee H, Lee N, Seo Y, et al. Comparison of frictional forces on graphene and graphite [J]. Nanotechnology, 2009, 20: 325701鈥?25706.View Article PubMed
    [7]Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines [J]. Angewandte Chemie-International Edition, 2007, 46: 72鈥?91.View Article
    [8]Fleishman D, Klafter J, Porto M, et al. Mesoscale engines by nonlinear friction [J]. Nano Letters, 2007, 7: 837鈥?42.View Article PubMed
    [9]Marago O M, Bonaccorso F, Saija R, et al. Brownian motion of graphene [J]. ACS Nano, 2010, 4: 7515鈥?523.View Article PubMed
    [10]Lee C G, Li Q Y, Kalb W, et al. Frictional characteristics of atomically thin sheets [J]. Science, 2010, 328: 76鈥?0.View Article PubMed
    [11]Socoliuc A, Gnecco E, Maier S, et al. Atomic-scale control of friction by actuation of nanometer-sized contacts [J]. Science, 2006, 313: 207鈥?10.View Article PubMed
    [12]Zheng J M, Guo P, Ren Z Y, et al. Conductance fluctuations as a function of sliding motion in bilayer graphene nanoribbon junction: A first-principles investigation [EB/OL]. [2014-05-16]. http://scitation.aip.org/content/aip/journal/apl/101/8/10.1063/1.4739838.
    [13]Kim K S, Lee H J, Lee C, et al. Chemical vapor deposi- tion-grown graphene: The thinnest solid lubricant [J]. ACS Nano, 2011, 5: 5107鈥?114.View Article PubMed
    [14]Schwarz U D, Zw枚rner O, K枚ster P, et al. Quantitative analysis of the frictional properties of solid materials at low loads. I. Carbon compounds [J]. Physical Review B, 1997, 56: 6987鈥?996.View Article
    [15]Liu E, Blanpain B, Celis J P, et al. Comparative study between macrotribology and nanotribology [J]. Journal of Applied Physics, 1998, 84: 4859鈥?865.View Article
    [16]Buzio R, Gnecco E, Boragno C, et al. Friction force microscopy investigation of nanostructured carbon films [J]. Carbon, 2002, 40: 883鈥?90.View Article
    [17]Dienwiebel M, Verhoeven G S, Pradeep N, et al. Superlubricity of Graphite [J]. Physical Review Letter, 2004, 92: 126101鈥?26104.View Article
    [18]Dienwiebel M, Pradeep N, Verhoeven G S, et al. Model experiments of superlubricity of graphite [J]. Surface Science, 2005, 576: 197鈥?11.View Article
    [19]Feng X F, Kwon S K, Park J Y, et al. Superlubric sliding of graphene nanoflakes on graphene [J]. Nano, 2013, 7: 1718鈥?724.
    [20]Popov A M, Lebedeva I V, Knizhnik A A, et al. Commensurate- incommensurate phase transition in bilayer graphene [J]. Physical Review B, 2011, 84: 45404鈥?5409.View Article
    [21]Popov A M, Lebedeva I V, Knizhnik A A, et al. Barriers to motion and rotation of graphene layers based on measurements of shear mode frequencies [J]. Chemical Physics Letters, 2012, 536: 82鈥?6.View Article
    [22]Tomlinson G A. CVI. A molecular theory of friction [J]. Philosophical Magazine Series 7, 1929, 7: 905鈥?39.View Article
    [23]Prandtl L. A conceptual model to the kinetic theory of solid bodies[J]. ZAMM-Journal of Applied Mathematics and Mechanics / Zeitschrift f眉r Angewandte Mathematik und Mechanik, 1928, 8: 85鈥?06.View Article
    [24]Enrico G, Sabine M, Ernst M. Superlubricity of dry nano-contacts [J]. Journal of Physics: Condensed Matter, 2008, 20: 354004鈥?54008.
    [25]Matsushita K, Matsukawa H, Sasaki N. Atomic scale friction between clean graphite surfaces [J]. Solid State Communications, 2005, 136: 51鈥?5.View Article
    [26]Filippov A E, Dienwiebel M, Frenken J W M, et al. Torque and twist against superlubricity [EB/OL]. [2014-05-16]. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.100.046102.
    [27]de Wijn A S, Fusco C, Fasolino A. Stability of superlubric sliding on graphite [EB/OL]. [2014-05-16]. http://journals. aps.org/pre/abstract/10.1103/PhysRevE.81.046105.
    [28]He G, Robbins M O. Simulations of the static friction due to adsorbed molecules [EB/OL]. [2014-05-16]. http://journals. aps.org/prb/abstract/10.1103/PhysRevB.64.035413.
    [29]Daly C, Zhang J, Sokoloff J B. Dry friction due to adsorbed molecules [J]. Physical Review Letter, 2003, 90: 246101鈥?46104.View Article
    [30]M眉ser M H. Structural lubricity: Role of dimension and symmetry [J]. Europhysics Letters, 2004, 66: 97鈥?03.View Article
    [31]Wang J J, Wang F, Li J M, et al. Theoretical study of superlow friction between two single-side hydrogenated graphene sheets [J]. Tribology Letters, 2012, 48: 255鈥?61.View Article
    [32]Wang J J, Wang F, Yuan P F, et al. First-principles study of nanoscale friction between graphenes [J]. Acta Physica Sinica, 2012, 61: 106801鈥?06807(Ch).
    [33]Bonelli F, Manini N, Cadelano E, et al. Atomistic simulations of the sliding friction of graphene flakes [J]. The European Physical Journal B, 2009, 70: 449鈥?59.View Article
    [34]Miura K, Sasaki N, Kamiya S. Friction mechanisms of graphite from a single-atomic tip to a large-area flake tip [EB/OL]. [2014-05-16]. http://journals.aps.org/prb/abstract/10.1103/PhysRevB.69.075420.
    [35]Lebedeva I V, Knizhnik A A, Popov A M, et al. Fast diffusion of a graphene flake on a graphene layer [J]. Physical Review B, 2010, 82: 155460鈥?55469.View Article
    [36]Saito R, Matsuo R, Kimura T, et al. Anomalous potential barrier of double-wall carbon nanotube [J]. Chemical Physics Letters, 2001, 348: 187鈥?93.View Article
    [37]Verhoeven G S, Dienwiebel M, Frenken J W M. Model calculations of superlubricity of graphite [J]. Physical Review B, 2004, 70: 165418鈥?65427.View Article
    [38]Wong H S, Durkan C, Chandrasekhar N. Tailoring the local interaction between graphene layers in graphite at the atomic scale and above using scanning tunneling microscopy [J]. Nano, 2009, 3: 3455鈥?462.
    [39]Yeoman M L, Young D A. The anisotropic pressure dependence of conduction in well-oriented pyrolytic graphite I. Non-oscillatory effects and the role of carrier-carrier scattering [J]. Journal of physics C, 1969, 2: 1742鈥?750.View Article
  • 作者单位:Jianwen Li (1) (2)
    Nianhua Liu (1)

    1. Institute for Advanced Study, Nanchang University, Nanchang, 330031, Jiangxi, China
    2. School of Science, Nanchang Institute of Technology, Nanchang, 330099, Jiangxi, China
  • 刊物类别:Mathematics and Statistics
  • 刊物主题:Mathematics
    Computer Science, general
    Physics
    Life Sciences
    Chinese Library of Science
  • 出版者:Wuhan University, co-published with Springer
  • ISSN:1993-4998
文摘
To identify the relation between torque and superlubric motion, we investigate the interlayer sliding behavior of two graphene disks with numerical computation methods. The potential energy, lateral force and torque between the top and bottom graphene disks, which are associated with misfit angle, translational displacement and interlayer distance, are analyzed. The results show that the rotation of the top disk is feeble for commensurate state, but it is difficult to realize superlubricity due to the lateral force fluctuating remarkably. For incommensurate state, the flake exhibits vanishing torque approaching to zero only for partial sliding directions. The superlubricity between the top and bottom disks will be eliminated due to torque-induced reorientation along other sliding directions. Whether for commensurate or incommensurate contact, the amplitudes of the lateral force (516 pN and 13 pN, respectively) are in qualitative agreement with experimental observation (typically 250 pN and 50 pN, respectively). It shows that the interlayer torque is insensitive to the top disk size with incommensurate contact. The results suggest that the superlubric motion of graphene disk can be controlled by adjusting the torque.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700