Synthesis and properties of phosphorus-containing bio-based epoxy resin from itaconic acid
详细信息    查看全文
  • 作者:SongQi Ma (1)
    XiaoQing Liu (1)
    YanHua Jiang (1)
    LiBo Fan (1)
    JianXiang Feng (1)
    Jin Zhu (1)
  • 关键词:epoxy resin ; bio ; based ; itaconic acid ; DOPO ; flame retardancy
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:57
  • 期:3
  • 页码:379-388
  • 全文大小:899 KB
  • 参考文献:1. Bucknall CB, Gilbert AH. Toughening tetrafunctional epoxy-resins using polyetherimide. / Polymer, 1989, 30(2): 213鈥?17 CrossRef
    2. Lee MC, Ho TH, Wang CS. Synthesis of tetrafunctional epoxy resins and their modification with polydimethylsiloxane for electronic application. / J Appl Polym Sci, 1996, 62: 217鈥?25 CrossRef
    3. Lin ST, Huang SK. Thermal degradation study of siloxane-DGEBA epoxy copolymers. / Eur Polym J, 1997, 33(3): 365鈥?73 CrossRef
    4. Raquez JM, Del Glise M, Lacrampe MF, Krawczak P. Thermosetting (bio)materials derived from renewable resources: A critical review. / Prog Polym Sci, 2010, 35(4): 487鈥?09 CrossRef
    5. Flint S, Markle T, Thompson S, Wallace E. Bisphenol A exposure, effects, and policy: A wildlife perspective. / J Environ Manage, 2012, 104: 19鈥?4 CrossRef
    6. Chrysanthos M, Galy J, Pascault JP. Preparation and properties of bio-based epoxy networks derived from isosorbide diglycidyl ether. / Polymer, 2011, 52(16): 3611鈥?620 CrossRef
    7. Miyagawa H, Mohanty AK, Misra M, Drzal LT. Thermo-physical and impact properties of epoxy containing epoxidized linseed oil, 1-anhydride-cured epoxy. / Macromol Mater Eng, 2004, 289(7): 629鈥?35 CrossRef
    8. Miyagawa H, MisrA M, Drzal LT, Mohanty AK. Fracture toughness and impact strength of anhydride-cured biobased epoxy. / Polym Eng Sci, 2005, 45(4): 487鈥?95 CrossRef
    9. Gupta AP, Ahmad S, Dev A. Modification of novel bio-based resin-epoxidized soybean oil by conventional epoxy resin. / Polym Eng Sci, 2011, 51(6): 1087鈥?091 CrossRef
    10. Fombuena V, Sanchez-Nacher L, Samper MD, Juarez D, Balart R. Study of the properties of thermoset materials derived from epoxidized soybean oil and protein fillers. / J Am Oil Chem Soc, 2013, 90(3): 449鈥?57 CrossRef
    11. Stemmelen M, Pessel F, Lapinte V, Caillol S, Habas JP, Robin JJ. A fully biobased epoxy resin from vegetable oils: From the synthesis of the precursors by thiol-ene reaction to the study of the final material. / Polym Sci Pol Chem, 2011, 49(11): 2434鈥?444 CrossRef
    12. Hofmann K, Glasser W. Engineering plastics from lignin, 23. Network formation of lignin-based epoxy resins. / Macromol Chem Phys, 1994, 195(1): 65鈥?0 CrossRef
    13. Hofmann K, Glasser WG. Engineering plastics from lignin. 22. Cure of lignin based epoxy resins. / J Adhes, 1993, 40(2鈥?): 229鈥?41 CrossRef
    14. El Mansouri NE, Yuan QL, HUANG FR. Synthesis and characterization of kraft lignin-based epoxy resins. / BioResources, 2011, 6(3): 2492鈥?503
    15. El Mansouri NE, Yuan QL, Huang FR. Characterization of alkaline lignins for use in phenol-formaldehyde and epoxy resins. / Bio Resources, 2011, 6(3): 2647鈥?662
    16. Koike T. Progress in development of epoxy resin systems based on wood biomass in Japan. / Polym Eng Sci, 2012, 52(4): 701鈥?17 CrossRef
    17. Liu XQ, Zhang JW. High-performance biobased epoxy derived from rosin. / Polym int, 2010, 59(5): 607鈥?09
    18. Liu XQ, Huang W, Jiang YH, Zhu J, Zhang CZ. Preparation of a bio-based epoxy with comparable properties to those of petroleum-based counterparts. / Express Polym Lett, 2012, 6(4): 293鈥?98 CrossRef
    19. Deng LL, Shen MM, Yu J, Wu K, Ha CY. Preparation, characterization, and flame retardancy of novel rosin-based siloxane epoxy resins. / Ind Eng Chem Res, 2012, 51(24): 8178鈥?184 CrossRef
    20. Patel M, Patel R, Patel V. Effects of reactive diluent diepoxidized cardanol and epoxy fortifier on curing kinetics of epoxy resin. / J Therm Anal Calorim, 1989, 35(1): 47鈥?7 CrossRef
    21. Aouf C, Lecomte J, Villeneuve P, Dubreucq E, Fulcrand H. Chemoenzymatic functionalization of gallic and vanillic acids: Synthesis of bio-based epoxy resins prepolymers. / Green Chem, 2012, 14(8): 2328鈥?336 CrossRef
    22. Aouf C, Nouailhas H, Fache M, Caillol S, Boutevin B, Fulcrand H. Multi-functionalization of gallic acid. Synthesis of a novel bio-based epoxy resin. / Eur Polym J, 2013, 49(6): 1185鈥?195 CrossRef
    23. Cao L, Liu X, Na H, Wu Y, Zheng W, Zhu J. How a bio-based epoxy monomer enhanced the properties of diglycidyl ether of bisphenol A (DGEBA)/graphene composites. / J Mater Chem A, 2013, 1(16): 5081鈥?088 CrossRef
    24. Werpy T, Petersen G. Eds. / Top Value Added Chemicals from Biomass. Volume I-Results of Screening for Potential Candidates from Sugars and Synthesis Gas. PNNL, NREL, EERE report, 2004
    25. Ma SQ, Liu XQ, Jiang YH, Tang ZB, Zhang CZ, Zhu J. Bio-based epoxy resin from itaconic acid and its thermosets cured with anhydride and comonomers. / Green Chem, 2013, 15(1): 245鈥?54 CrossRef
    26. Zhang C, Huang JY, Liu SM, Zhao JQ. The synthesis and properties of a reactive flame-retardant unsaturated polyester resin from a phosphorus-containing diacid. / Polym Adv Technol, 2011, 22(12): 1768鈥?777 CrossRef
    27. Laverty JJ. Hydrosilylation of unsaturated polyesters. / J Polym Sci: / Polym Lett Edition, 1973, 11(5): 327鈥?32
    28. Lin CH, Wu CY, Wang CS. Synthesis and properties of phosphorus-containing advanced epoxy resins. II. / J Appl Polym Sci, 2000, 78(1): 228鈥?35 CrossRef
    29. Shieh JY, Wang CS. Effect of the organophosphate structure on the physical and flame-retardant properties of an epoxy resin. / Polym Sci Pol Chem, 2002, 40(3): 369鈥?78 CrossRef
    30. Grand AF, Wilkie CA. / Fire Retardancy of Polymeric Materials. Marcel Dekker inc., New York, 2000
    31. The European Parliament and the European Council: Off. J. Eur. Union, 2003, Directive 2002/96/EC of 27
    32. Ravichandran S, Nagarajan S, Ku BC, Coughlin B, Emrick T, Kumar J, Nagarajan R. Halogen-free ultra-high flame retardant polymers through enzyme catalysis. / Green Chem, 2012, 14(3): 819鈥?24 CrossRef
    33. Wang ZF, Liu WQ, Hu CH, Ma SQ. Study on the modification of epoxy resin by a phosphorus- and silica-containing hybrid. / J Appl Polym Sci, 2011, 121(4): 2213鈥?219 CrossRef
    34. Wang X, Hu Y, Song L, Xing WY, Lu HD. Preparation, flame retardancy, and thermal degradation of epoxy thermosets modified with phosphorous/nitrogen-containing glycidyl derivative. / Polym Adv Technol, 2012, 23(2): 190鈥?97 CrossRef
    35. Xiong YQ, Zhang XY, Liu J, Li MM, Guo F, Xia XN, Xu WJ. Synthesis of novel phosphorus-containing epoxy hardeners and thermal stability and flame-retardant properties of cured products. / J Appl Polym Sci, 2012, 125(2): 1219鈥?225 CrossRef
    36. Zhang WC, Li XM, Fan HB, Yang RJ. Study on mechanism of phosphorus-silicon synergistic flame retardancy on epoxy resins. / Polym Degrad Stabil, 2012, 97(11): 2241鈥?248 CrossRef
    37. Zang L, Wagner S, Ciesielski M, Muller P, Doring M. Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. / Polym Adv Technol, 2011, 22(7): 1182鈥?191 CrossRef
    38. Wang X, Hu Y, Song L, Yang HY, Xing WY, Lu HD. Synthesis and characterization of a DOPO-substitued organophosphorus oligomer and its application in flame retardant epoxy resins. / Prog Org Coat, 2011, 71(1): 72鈥?2 CrossRef
    39. Hou M, Liu W, Su Q, Liu Y. Synthesis of a novel phosphorus-containing polysiloxane and its use as the modifier of thermal properties of an epoxy resin. / Polimery, 2007, 52(11鈥?2): 836鈥?40
    40. Wang CS, Shieh JY. Synthesis and properties of epoxy resins containing 2-(6-oxid-6 / H-dibenz[c,e] [1,2]oxaphosphorin-6-yl)1,4-benzenediol. / Polymer, 1998, 39(23): 5819鈥?826 CrossRef
    41. Wang XD, Zhang Q. Synthesis, characterization, and cure properties of phosphorus-containing epoxy resins for flame retardance. / Eur Polym J, 2004, 40(2): 385鈥?95 CrossRef
    42. Liu YL, Wu CS, Chiu YS, Ho WH. Preparation, thermal properties, and flame retardance of epoxy-silica hybrid resins. / Polym Sci Pol Chem, 2003, 41(15): 2354鈥?367 CrossRef
    43. Perret B, Schartel B, St枚脽 K, Ciesielski M, Diederichs J, D枚ring M, Kr盲mer J, Altst盲dt V. Novel DOPO-based flame retardants in high-performance carbon fibre epoxy composites for aviation. / Eur Polym J, 2011, 47(5): 1081鈥?089 CrossRef
    44. Schafer A, Seibold S, Walter O, Doring M. Novel high / T g flame retardancy approach for epoxy resins. / Polym Degrad Stabil, 2008, 93(2): 557鈥?60 CrossRef
    45. Hou MH, Liu WQ, Su QQ, Liu YF. Studies on the thermal properties and flame retardancy of epoxy resins modified with polysiloxane containing organophosphorus and epoxide groups. / Polym J, 2007, 39(7): 696鈥?02 CrossRef
    46. Wang X, Hu Y, Song L, Xing WY, Lu HD. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. / J Anal Appl Pyrolysis, 2011, 92(1): 164鈥?70 CrossRef
    47. Gu J, Dang J, Wu Y, Xie C, Han Y. Flame-retardant, thermal, mechanical and dielectric properties of structural non-halogenated epoxy resin composites. / Polym-Plast Technol Eng, 2012, 51(12): 1198鈥?203 CrossRef
    48. Wang CS, Shieh JY. Phosphorus-containing epoxy resin for an electronic application. / J Appl Polym Sci, 1999, 73(3): 353鈥?61 CrossRef
    49. Yu D, Liu W, Liu Y. Synthesis, thermal properties, and flame retardance of phosphorus-containing epoxy-silica hybrid resins. / Polym Composite, 2010, 31(2): 334鈥?39
    50. Yu D, Liu W, Liu Y. Study on heat resistance and flame retardation of polyfunctional epoxy-silica-phosphorus hybrid resins. / Chem Lett, 2008, 37(11): 1118鈥?119 CrossRef
    51. H枚fer R, Selig M. 10.02-Green chemistry and green polymer chemistry. / Polym Sci: A Compr Ref, 2012, 5鈥?4 CrossRef
    52. Hofer R. History of the Sustainability concept-renaissance of renewable resources. / Sustainable Solutions for Modern Economies, RSC Publishing: Cambridge, 2009, 1鈥?1
    53. Liu XQ, Xin WB, Zhang JW. Rosin-based acid anhydrides as alternatives to petrochemical curing agents. / Green Chem, 2009, 11(7): 1018鈥?025 CrossRef
    54. Tao ZQ, Yang SY, Chen JS, Fan L. Synthesis and characterization of imide ring and siloxane-containing cycloaliphatic epoxy resins. / Eur Polym J, 2007, 43(4): 1470鈥?479 CrossRef
    55. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. / J Ind Natl Bur Stand, 1956, 57: 217鈥?21 CrossRef
    56. Ozawa T. A modified method for kinetic analysis of thermoanalytical data. / J Therm Anal, 1976, 9: 369鈥?73 CrossRef
    57. Liu, Y. L, Chou CI. The effect of silicon sources on the mechanism of phosphorus-silicon synergism of flame retardation of epoxy resins. / Polym Degrad Stabil, 2005, 90(3): 515鈥?22 CrossRef
    58. Liu FH, Wang ZG, Wang YL, Zhang B. Copolymer networks from carboxyl-containing polyaryletherketone and diglycidyl ether of bisphenol-A: Preparation and properties. / J Polym Sci Pt B-Polym Phys, 2010, 48(23): 2424鈥?431 CrossRef
  • 作者单位:SongQi Ma (1)
    XiaoQing Liu (1)
    YanHua Jiang (1)
    LiBo Fan (1)
    JianXiang Feng (1)
    Jin Zhu (1)

    1. Ningbo Key Laboratory of Polymer Materials; Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
  • ISSN:1869-1870
文摘
A phosphorus-containing bio-based epoxy resin (EADI) was synthesized from itaconic acid (IA) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene 10-oxide (DOPO). As a matrix, its cured epoxy network with methyl hexahydrophthalic anhydride (MHHPA) as the curing agent showed comparable glass-transition temperature and mechanical properties to diglycidyl ether in a bisphenol A (DGEBA) system as well as good flame retardancy with UL94 V-0 grade during a vertical burning test. As a reactive flame retardant, its flame-resistant effect on DGEBA/MHHPA system as well as its influence on the curing behavior and the thermal and mechanical properties of the modified epoxy resin were investigated. Results showed that after the introduction of EADI, not only were the flame retardancy determined by vertical burning test, LOI measurement, and thermogravimetric analysis significantly improved, but also the curing reactivity, glass transition temperature (T g), initial degradation temperature for 5% weight loss (T d(5%)), and flexural modulus of the cured system improved as well. EADI has great potential to be used as a green flame retardant in epoxy resin systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700