Both HDAC5 and HDAC6 are required for the proliferation and metastasis of melanoma cells
详细信息    查看全文
  • 作者:Jiaqi Liu ; Jianying Gu ; Zihao Feng ; Yanhong Yang
  • 关键词:Melanoma ; HDAC inhibitors ; HDAC5 ; HDAC6 ; Proliferation ; Metastasis
  • 刊名:Journal of Translational Medicine
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:14
  • 期:1
  • 全文大小:2,166 KB
  • 参考文献:1.Stone A, Cooper J, Koenig KL, Golfinos JG, Oratz R. A comparison of survival rates for treatment of melanoma metastatic to the brain. Cancer Invest. 2004;22:492–7.PubMed CrossRef
    2.Miranda EP. Management of cutaneous melanoma. N Engl J Med. 2004;351:2770–1.PubMed CrossRef
    3.Wroblewski D, et al. The BH3-mimetic ABT-737 sensitizes human melanoma cells to apoptosis induced by selective BRAF inhibitors but does not reverse acquired resistance. Carcinogenesis. 2013;34:237–47. doi:10.​1093/​carcin/​bgs330 (bgs330 [pii]).PubMed CrossRef
    4.Peng Y, Song J, Lu J, Chen X. The histone deacetylase inhibitor sodium butyrate inhibits baculovirus-mediated transgene expression in Sf9 cells. J Biotechnol. 2007;131:180–7. doi:10.​1016/​j.​jbiotec.​2007.​06.​009 (S0168-1656(07)00419-1 [pii]).PubMed CrossRef
    5.Kuwajima A, Iwashita J, Murata J, Abe T. The histone deacetylase inhibitor butyrate inhibits melanoma cell invasion of Matrigel. Anticancer Res. 2007;27:4163–9.PubMed
    6.Munshi A, et al. Histone deacetylase inhibitors radiosensitize human melanoma cells by suppressing DNA repair activity. Clin Cancer Res. 2005;11:4912–22. doi:10.​1158/​1078-0432.​CCR-04-2088 (11/13/4912 [pii]).PubMed CrossRef
    7.Beppu T. Analysis and application of microbial functions. Nippon Nogeik Kaishi. 1986;60:529–35.CrossRef
    8.Duvic M, et al. Phase 2 trial of oral vorinostat (suberoylanilide hydroxamic acid, SAHA) for refractory cutaneous T-cell lymphoma (CTCL). Blood. 2007;109:31–9. doi:10.​1182/​blood-2006-06-025999 .PubMed PubMedCentral CrossRef
    9.Whittaker SJ, et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J Clin Oncol. 2010;28:4485–91. doi:10.​1200/​JCO.​2010.​28.​9066 .PubMed CrossRef
    10.Piekarz RL, et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J Clin Oncol. 2009;27:5410–7. doi:10.​1200/​JCO.​2008.​21.​6150 .PubMed PubMedCentral CrossRef
    11.Nebbioso A, Carafa V, Benedetti R, Altucci L. Trials with ‘epigenetic’ drugs: an update. Mol Oncol. 2012;6:657–82. doi:10.​1016/​j.​molonc.​2012.​09.​004 .PubMed CrossRef
    12.Qiu T, et al. Effects of treatment with histone deacetylase inhibitors in solid tumors: a review based on 30 clinical trials. Future Oncol. 2013;9:255–69. doi:10.​2217/​fon.​12.​173 .PubMed CrossRef
    13.Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett. 2008;269:7–17. doi:10.​1016/​j.​canlet.​2008.​03.​037 (S0304-3835(08)00239-5 [pii]).PubMed CrossRef
    14.Banerji U, et al. A phase I pharmacokinetic and pharmacodynamic study of CHR-3996, an oral class I selective histone deacetylase inhibitor in refractory solid tumors. Clin Cancer Res. 2012;18:2687–94. doi:10.​1158/​1078-0432.​CCR-11-3165 .PubMed CrossRef
    15.Dong M, et al. Phase I study of chidamide (CS055/HBI-8000), a new histone deacetylase inhibitor, in patients with advanced solid tumors and lymphomas. Cancer Chemother Pharmacol. 2012;69:1413–22. doi:10.​1007/​s00280-012-1847-5 .PubMed CrossRef
    16.Hofmeister CC, et al. A phase 1 trial of the anti-KIR antibody IPH2101 in patients with relapsed/refractory multiple myeloma. Blood. 2012;120:4324–33.PubMed PubMedCentral CrossRef
    17.Duhovic C, Child F, Wain EM. Management of cutaneous T-cell lymphoma. Clin Med (Lond). 2012;12:160–64.CrossRef
    18.Evens AM, et al. A Phase II multicenter study of the histone deacetylase inhibitor (HDACi) abexinostat (PCI-24781) in relapsed/refractory follicular lymphoma (FL) and mantle cell lymphoma (MCL). Blood. 2012;120.
    19.Cho Y, Sloutsky R, Naegle KM, Cavalli V. Injury-Induced HDAC5 nuclear export Is essential for axon regeneration. Cell. 2013;155:894–908. doi:10.​1016/​j.​cell.​2013.​10.​004 .PubMed PubMedCentral CrossRef
    20.Backs J, Backs T, Bezprozvannaya S, McKinsey TA, Olson EN. Histone deacetylase 5 acquires calcium/calmodulin-dependent kinase II responsiveness by oligomerization with histone deacetylase 4. Mol Cell Biol. 2008;28:3437–45. doi:10.​1128/​MCB.​01611-07 .PubMed PubMedCentral CrossRef
    21.Lemercier C, et al. mHDA1/HDAC5 histone deacetylase interacts with and represses MEF2A transcriptional activity. J Biol Chem. 2000;275:15594–9. doi:10.​1074/​jbc.​M908437199 .PubMed CrossRef
    22.Lu JR, McKinsey TA, Nicol RL, Olson EN. Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA. 2000;97:4070–5. doi:10.​1073/​pnas.​080064097 .PubMed PubMedCentral CrossRef
    23.McGee SL, et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes. 2008;57:860–7. doi:10.​2337/​db07-0843 (db07-0843 [pii]).PubMed CrossRef
    24.Agis-Balboa RC, Pavelka Z, Kerimoglu C, Fischer A. Loss of HDAC5 impairs memory function: implications for alzheimer’s disease. J Alzheimers Dis. 2013;33:35–44. doi:10.​3233/​Jad-2012-121009 .PubMed
    25.Gao YS, et al. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis. Mol Cell Biol. 2007;27:8637–47. doi:10.​1128/​Mcb.​00393-07 .PubMed PubMedCentral CrossRef
    26.Tran ADA, et al. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J Cell Sci. 2007;120:1469–79. doi:10.​1242/​Jcs.​03431 .PubMed CrossRef
    27.Zilberman Y, et al. Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci. 2009;122:3531–41. doi:10.​1242/​Jcs.​046813 .PubMed CrossRef
    28.Lee YS, et al. The cytoplasmic deacetylase HDAC6 is required for efficient oncogenic tumorigenesis. Cancer Res. 2008;68:7561–9. doi:10.​1159/​0008-5472.​Can-08-0188 .PubMed PubMedCentral CrossRef
    29.Kovacs JJ, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol Cell. 2005;18:601–7. doi:10.​1016/​j.​molcel.​2005.​04.​021 .PubMed CrossRef
    30.Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response. Genes Dev. 2007;21:3381–94. doi:10.​1101/​Gad.​461107 .PubMed PubMedCentral CrossRef
    31.Seigneurin-Berny D, et al. Identification of components of the murine histone deacetylase 6 complex: link between acetylation and ubiquitination signaling pathways. Mol Cell Biol. 2001;21:8035–44. doi:10.​1128/​Mcb.​21.​23.​8035-8044.​2001 .PubMed PubMedCentral CrossRef
    32.Li Q, et al. Helicobacter pylori enhances cyclooxygenase 2 expression via p38MAPK/ATF-2 signaling pathway in MKN45 cells. Cancer Lett. 2009;278:97–103. doi:10.​1016/​j.​canlet.​2008.​12.​032 (S0304-3835(09)00004-4 [pii]).PubMed CrossRef
    33.Hou J, Liu Y, Shao Y. The MSHA strain of Pseudomonas aeruginosa activated TLR pathway and enhanced HIV-1 DNA vaccine immunoreactivity. PLoS ONE. 2012;7:e47724. doi:10.​1371/​journal.​pone.​0047724 (PONE-D-12-14816 [pii]).PubMed PubMedCentral CrossRef
    34.Lei Q, et al. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell. 2006;9:367–78. doi:10.​1016/​j.​ccr.​2006.​03.​031 (S1535-6108(06)00118-8 [pii]).PubMed CrossRef
    35.Liu ZB, et al. Inhibition of EGFR pathway signaling and the metastatic potential of breast cancer cells by PA-MSHA mediated by type 1 fimbriae via a mannose-dependent manner. Oncogene. 2010;29:2996–3009. doi:10.​1038/​onc.​2010.​70 (onc201070 [pii]).PubMed CrossRef
    36.Fan J, et al. Down-regulation of HDAC5 inhibits growth of human hepatocellular carcinoma by induction of apoptosis and cell cycle arrest. Tumour Biol. 2014;. doi:10.​1007/​s13277-014-2358-2 .PubMedCentral
    37.Qin HX, et al. HDAC6 siRNA inhibits proliferation and induces apoptosis of HeLa cells and its related molecular mechanism. Asian Pac J Cancer Prev. 2012;13:3367–71.PubMed CrossRef
    38.Di Giorgio E, Gagliostro E, Clocchiatti A, Brancolini C. The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase. Mol Cell Biol. 2015;35:1633–47. doi:10.​1128/​MCB.​01461-14 .PubMed PubMedCentral CrossRef
    39.Nussbaum ES, Djalilian HR, Cho KH, Hall WA. Brain metastases. Histology, multiplicity, surgery, and survival. Cancer. 1996;78:1781–8. doi:10.​1002/​(SICI)1097-0142(19961015)78:​8<1781:​AID-CNCR19>3.​0 (CO;2-U [pii]).PubMed CrossRef
    40.Medina V, et al. Induction of caspase-3 protease activity and apoptosis by butyrate and trichostatin A (inhibitors of histone deacetylase): dependence on protein synthesis and synergy with a mitochondrial/cytochrome c-dependent pathway. Cancer Res. 1997;57:3697–707.PubMed
    41.Qiu L, et al. Histone deacetylase inhibitors trigger a G2 checkpoint in normal cells that is defective in tumor cells. Mol Biol Cell. 2000;11:2069–83.PubMed PubMedCentral CrossRef
    42.Richon VM, Sandhoff TW, Rifkind RA, Marks PA. Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA. 2000;97:10014–9. doi:10.​1073/​pnas.​180316197 (180316197 [pii]).PubMed PubMedCentral CrossRef
    43.Marks P, et al. Histone deacetylases and cancer: causes and therapies. Nat Rev Cancer. 2001;1:194–202. doi:10.​1038/​35106079 .PubMed CrossRef
    44.Jeon EJ, et al. Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem. 2006;281:16502–11. doi:10.​1074/​jbc.​M512494200 .PubMed CrossRef
    45.Lv L, et al. Mitogenic and oncogenic stimulation of K433 acetylation promotes PKM2 protein kinase activity and nuclear localization. Mol Cell. 2013;52:340–52. doi:10.​1016/​j.​molcel.​2013.​09.​004 .PubMed PubMedCentral CrossRef
    46.Wang B, et al. Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat Commun. 2014;5:3479. doi:10.​1038/​ncomms4479 (ncomms4479 [pii]).PubMed PubMedCentral
    47.Bertos NR, et al. Role of the tetradecapeptide repeat domain of human histone deacetylase 6 in cytoplasmic retention. J Biol Chem. 2004;279:48246–54. doi:10.​1074/​jbc.​M408583200 (M408583200 [pii]).PubMed CrossRef
    48.de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J. 2003;370:737–49. doi:10.​1042/​BJ20021321 (BJ20021321 [pii]).PubMed PubMedCentral CrossRef
    49.Pandey UB, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature. 2007;447:859–63. doi:10.​1038/​nature05853 (nature05853 [pii]).PubMed CrossRef
    50.Mihaylova MM, et al. Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis. Cell. 2011;145:607–21. doi:10.​1016/​j.​cell.​2011.​03.​043 .PubMed PubMedCentral CrossRef
    51.Yang MH, et al. HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol Cancer Res. 2013;11:1072–7. doi:10.​1158/​1541-7786.​MCR-13-0040-T (1541-7786.MCR-13-0040-T [pii]).PubMed PubMedCentral CrossRef
    52.Baertschi S, Baur N, Lueders-Lefevre V, Voshol J, Keller H. Class I and IIa histone deacetylases have opposite effects on sclerostin Gene regulation. J Biol Chem. 2014;289:24995–5009. doi:10.​1074/​jbc.​M114.​564997 .PubMed PubMedCentral CrossRef
    53.Lai F, et al. Cotargeting histone deacetylases and oncogenic BRAF synergistically kills human melanoma cells by necrosis independently of RIPK1 and RIPK3. Cell Death Dis. 2013;4:e655. doi:10.​1038/​cddis.​2013.​192 (cddis2013192 [pii]).PubMed PubMedCentral CrossRef
    54.Sun Y, et al. Histone deacetylase 5 blocks neuroblastoma cell differentiation by interacting with N-Myc. Oncogene. 2014;33:2987–94. doi:10.​1038/​onc.​2013.​253 (onc2013253 [pii]).PubMed CrossRef
  • 作者单位:Jiaqi Liu (1)
    Jianying Gu (1)
    Zihao Feng (1)
    Yanhong Yang (2)
    Ningwen Zhu (3)
    Weiyue Lu (4)
    Fazhi Qi (1)

    1. Department of Plastic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
    2. Division of Anti-tumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Rd, Shanghai, 201203, China
    3. Huashan Hospital, Fudan University, 12 Middle Urumqi Rd, Shanghai, 200040, China
    4. Department of Pharmaceutics, School of Pharmacy, Fudan University, 826 Zhangheng Rd, Shanghai, 201203, China
  • 刊物主题:Biomedicine general; Medicine/Public Health, general;
  • 出版者:BioMed Central
  • ISSN:1479-5876
文摘
Background Histone deacetylase (HDAC) inhibitors are widely used in clinical investigation as novel drug targets. For example, panobinostat and vorinostat have been used to treat patients with melanoma. However, HDAC inhibitors are small-molecule compounds without a specific target, and their mechanism of action is unclear. Therefore, it is necessary to investigate which HDACs are required for the proliferation and metastasis of melanoma cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700