A Novel Plasma-Sprayed Nanostructured Coating with Agglomerated-Unsintered Feedstock
详细信息    查看全文
  • 作者:Yang Gao ; Yan Zhao ; Deming Yang ; Jianyi Gao
  • 关键词:agglomerates ; nano ; equiaxed structure ; plasma spray ; thermal barrier coating
  • 刊名:Journal of Thermal Spray Technology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:25
  • 期:1-2
  • 页码:291-300
  • 全文大小:3,812 KB
  • 参考文献:1.M. Gell, E.H. Jordan, Y.H. Sohn, D. Goberman, L. Shaw, and T.D. Xiao, Development and Implementation of Plasma Sprayed Nanostructured Ceramic Coatings, Surf. Coat. Technol., 2001, 146-147, p 48-54CrossRef
    2.R.S. Lima and B.R. Marple, Nanostructured YSZ Thermal Barrier Coatings Engineered to Counteract Sintering Effects, Mater. Sci. Eng. A, 2008, 485, p 182-193CrossRef
    3.R.S. Lima, A. Kucuk, and C.C. Berndt, Integrity of Nanostructured Partially Stabilized Zirconia After Plasma Spray Processing, Mater. Sci. Eng., 2001, A313, p 75-82CrossRef
    4.A.A. Voevodin, J.J. Hu, J.G. Jones, T.A. Fitz, and J.S. Zabinski, Growth and Structural Characterization of Yttria-Stabilized Zirconia-Gold Nanocomposite Films with Improved Toughness, Thin Solid Films, 2001, 401, p 187-195CrossRef
    5.R.S. Lima and B.R. Marple, Thermal Spray Coatings Engineered from Nanostructured Ceramic Agglomerated Powders for Structural, Thermal Barrier and Biomedical Applications: A Review, J. Thermal Spray Technol., 2007, 16(1), p 40-63CrossRef
    6.S. Eidelman and X. Yang, Three Dimensional Simulation of HVOF Spray Deposition of Nanoscale Materials, Nanostruct. Mater., 1997, 9, p 79-84CrossRef
    7.R.S. Lima, A. Kucuk, and C.C. Berndt, Bimodal Distribution of Mechanical Properties on Plasma Sprayed Nanostructured Partially Stabilized Zirconia, Mater. Sci. Eng. A, 2002, 327, p 224-232CrossRef
    8.N.P. Padture, K.W. Schlichting, T. Bhatla, A. Ozturk, B. Cetegen, E.H. Jordan, M. Gell, S. Jiang, T.D. Xiao, P.R. Strutt, E. Garca, P. Mirnzo, and M.I. Osendi, Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray, Acta Mater., 2001, 49, p 2251-2257CrossRef
    9.P. Fauchais and G. Montavon, Latest Developments in Suspension and Liquid Precursor Thermal Spraying, J. Thermal Spray Technol., 2010, 19(1-2), p 226-239CrossRef
    10.M. Vardelle and P. Fauchais, Coating Generation: Vaporization of Particles in Plasma Spraying and Splat Formation, Pure Appl. Chem., 1996, 68, p 1093-1918CrossRef
    11.P. Carpio, A. Borrell, M.D. Salvador, A. Gómez, E. Martínez, and E. Sánchez, Microstructure and Mechanical Properties of Plasma Spraying Coatings from YSZ Feedstocks Comprising Nano- and Submicron-Sized Particles, Ceram. Int., 2015, 41, p p4108-4117CrossRef
    12.H.G. Jiang, M. Ruhle, and E.J. Lavernia, On the Applicability of the X-ray Diffraction Line Profile Analysis in Extracting Grain Size and Microstrain in Nanocrystalline Materials, J. Mater. Res., 1999, 14(2), p 549-559CrossRef
    13.M. Muroi, G. Trotter, P. G. McCormick, M. Kawahara, and M. Tokita, Preparation of Nano-grained Zirconia Ceramics by Low-Temperature, Low-Pressure Spark Plasma Sintering, J. Mater. Sci., 2008, 43(19), p 6376-6384CrossRef
    14.S. Guessasma and C. Coddet, Microstructure of APS Alumina-Titania Coatings Analysed Using Artificial Neural Network, Acta Mater., 2004, 52, p 5157-5164CrossRef
    15.Y. Gao, X. Xu, and G. Xin, High Hardness Alumina Coating Prepared by Low Power Plasma Spray, Surf. Coat. Technol., 2002, 154, p 189-193CrossRef
    16.H. Huang, K. Eguchi, M. Kambara, and T. Yoshida, Ultrafast Thermal Plasma Physical Vapor Deposition of Yttria-Stabilized Zirconia for Novel Thermal Barrier Coatings, J. Thermal Spray Technol., 2006, 15(1), p 83-91CrossRef
    17.A. Hospach, G. Mauer, R. Vaßen, and D. Stover, Columnar-Structured Thermal Barrier Coatings (TBCs) by Thin Film Low-Pressure Plasma Spraying (LPPS-TF), J. Thermal Spray Technol., 2011, 20(1-2), p 116-120CrossRef
    18.G. Mauer, A. Hospach, N. Zotov, and R. Vaßen, Process Conditions and Microstructures of Ceramic Coatings by Gas Phase Deposition Based on Plasma Spraying, J. Thermal Spray Technol., 2013, 22(2-3), p 83-89CrossRef
    19.K. von Niessen and M. Gindrat, Plamsma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase, J. Thermal Spray Technol., 2013, 20(4), p 736-743CrossRef
    20.Y. Gao, D.M. Yang, and J. Gao, Characteristics of a Plasma Torch Designed for Very Low Pressure Plasma Spraying, J. Thermal Spray Technol., 2012, 21(3-4), p 740-744CrossRef
    21.Y. Gao, J. Gao, and D. M. Yang, Equiaxed and Porous Thermal Barrier Coatings Deposited by Atmospheric Plasma Spray Using a Nanoparticles Powder, Adv. Eng. Mater., 2014, 16(4), p 406-412CrossRef
    22.M.B. Silva, S.M. Guo, N. Uppu, R. Diwan, and P.F. Mensah, Porosity Effects on Thermo-physical Properties of Standard and Vertically Cracked Thermal Barrier Coating Samples, Proc. ASME Turbo Expo, 2009, vol. 1, p 289–298.
    23.P. Eichert, M. Imber, and C. Coddet, Numerical Study of an Ar-H2 Gas Mixture Flowing Inside and Outside a DC Plasma Torch, J. Thermal Spray Technol., 1998, 7(4), p 505-512CrossRef
    24.S. Janlsson, A. Vardelle, J.F. Couder, E. Meillot, B. Pateyron, and P. Fauchais, Plasma Spraying Using Ar-He-H2 Gas Mixtures, J. Thermal Spray Technol., 1999, 8(4), p 545-552CrossRef
    25.A. Joulia, W. Duarte, S. Goutier, M. Vardelle, A. Vardelle, and S. Rossignol, Tailoring the Spray Conditions for Suspension Plasma Spraying, J. Thermal Spray Technol., 2015, 24(1-2), p 24-29
  • 作者单位:Yang Gao (1)
    Yan Zhao (1)
    Deming Yang (1)
    Jianyi Gao (2)

    1. Thermal Spray Centre of the Dalian Maritime University, Dalian, China
    2. School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, 5706, USA
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Surfaces and Interfaces and Thin Films
    Tribology, Corrosion and Coatings
    Materials Science
    Characterization and Evaluation Materials
    Operating Procedures and Materials Treatment
    Analytical Chemistry
  • 出版者:Springer Boston
  • ISSN:1544-1016
文摘
In this article, an unusual agglomerated powder of Y2O3-stabilized ZrO2 (YSZ) that did not undergo calcination was introduced as a feedstock for thermal spray deposition using internal injection atmospheric plasma spray (APS) and the very-low-pressure plasma spray (VLPPS) methods at an ambient pressure of 100-150 Pa. The results show that the microstructure of the coating is influenced not only by the spray parameters (such as arc gas composition, ambient pressure, and arc current) but also by the manufacture process of the agglomerates particularly the sintering process. The microstructure of the coating exhibited a bimodal structure if the APS method was used; in this case, the microstructure resembles that of other nanostructured coatings using regular agglomerated-sintered feedstock. A coating having a novel fully nano-equiaxed structure with a microporosity of 10-15% was first successfully deposited using VLPPS with 20Ar-30He SLPM plasma gas flows at a current of 500 A. The experimental results suggest that the nano-scale equiaxed structure in the coating is directly formed from original nanoparticles that had undergone melting, while inside the nozzle they were subsequently solidified on the substrate. The VLPPS method, which offers some unique advantages over the conventional plasma spray process, is generic in nature and can potentially be used to deposit a wide variety of ceramic coatings for diverse applications. The thermal conductivity values of the fully nanostructured and bimodal structured coatings were measured, and the microstructures of the coating both in the as-sprayed state and after heat treatment for 10 h at 1300 °C were investigated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700