Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability
详细信息    查看全文
  • 作者:Jianyun Wang ; Yusuf Cagatay Ersan ; Nico Boon…
  • 关键词:Bacteria ; Bacterial ; induced CaCO3 precipitation ; Surface protection ; Crack repair ; Self ; healing
  • 刊名:Applied Microbiology and Biotechnology
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:100
  • 期:7
  • 页码:2993-3007
  • 全文大小:1,099 KB
  • 参考文献:Achal V, Mukerjee A, Reddy MS (2013) Biogenic treatment improves the durability and remediates the cracks of concrete structures. Constr Build Mater 48:1–5. doi:10.​1016/​j.​conbuildmat.​2013.​06.​061 CrossRef
    Achal V, Mukherjee A (2015) A review of microbial precipitation for sustainable construction. Constr Build Mater 93:1224–1235. doi:10.​1016/​j.​conbuildmat.​2015.​04.​051 CrossRef
    Achal V, Mukherjee A, Basu PC, Reddy MS (2009) Lactose mother liquor as an alternative nutrient source for microbial concrete production by Sporosarcina pasteurii. J Ind Microbiol Biotechnol 36(3):433–438. doi:10.​1007/​s10295-008-0514-7 CrossRef PubMed
    Achal V, Mukherjee A, Goyal S, Reddy MS (2012) Corrosion prevention of reinforced concrete with microbial calcite precipitation. ACI Mater J 109(2):157–163
    Achal V, Pan XL, Ozyurt N (2011) Improved strength and durability of fly ash-amended concrete by microbial calcite precipitation. Ecol Eng 37(4):554–559. doi:10.​1016/​j.​ecoleng.​2010.​11.​009 CrossRef
    Andalib R, Abd Majid MZ, Keyvanfar A, Talaiekhozan A, Hussin MW, Shafaghat A, Zin RM, Lee CT, Fulazzaky MA, Ismail HH (2014) Durability improvement assessment in different high strength bacterial structural concrete grades against different types of acids. Sadhana-Acad Proc Eng Sci 39(6):1509–1522
    Bang SS, Galinat JK, Ramakrishnan V (2001) Calcite precipitation induced by polyurethane-immobilized Bacillus pasteurii. Enzyme Microb Technol 28(4–5):404–409. doi:10.​1016/​s0141-0229(00)00348-3 CrossRef PubMed
    Basaran Z (2013) Biomineralization in cement based materials: inoculation of vegetative cells. PhD thesis University of Texas, Austin, US
    Benini S, Gessa C, Ciurli S (1996) Bacillus pasteurii urease: a heteropolymeric enzyme with a binuclear nickel active site. Soil Biol Biochem 28(6):819–821. doi:10.​1016/​0038-0717(96)00017-x CrossRef
    Boquet E, Boronat A, Ramoscor A (1973) Production of calcite (calcium-carbonate) crystals by soil bacteria is a general phenomenon. Nature 246(5434):527–529. doi:10.​1038/​246527a0 CrossRef
    Bundur ZB, Kirisits MJ, Ferron RD (2015) Biomineralized cement-based materials: impact of inoculating vegetative bacterial cells on hydration and strength. Cem Concr Res 67:237–245. doi:10.​1016/​j.​cemconres.​2014.​10.​002 CrossRef
    Castanier S, Le Metayer-Levrel G, Perthuisot JP (1999) Ca-carbonates precipitation and limestone genesis—the microbiogeologist point of view. Sediment Geol 126(1–4):9–23. doi:10.​1016/​s0037-0738(99)00028-7
    Chahal N, Siddique R (2013) Permeation properties of concrete made with fly ash and silica fume: influence of ureolytic bacteria. Constr Build Mater 49:161–174. doi:10.​1016/​j.​conbuildmat.​2013.​08.​023 CrossRef
    Chahal N, Siddique R, Rajor A (2012) Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of fly ash concrete. Constr Build Mater 28(1):351–356. doi:10.​1016/​j.​conbuildmat.​2011.​07.​042 CrossRef
    Cheng L, Cord-Ruwisch R (2012) In situ soil cementation with ureolytic bacteria by surface percolation. Ecol Eng 42:64–72. doi:10.​1016/​j.​ecoleng.​2012.​01.​013 CrossRef
    Da Silva FB, De Belie N, Boon N, Verstraete W (2015) Production of non-axenic ureolytic spores for self-healing concrete applications. Constr Build Mater 93:1034–1041. doi:10.​1016/​j.​conbuildmat.​2015.​05.​049 CrossRef
    De Belie N (2010) Microorganisms versus stony materials: a love-hate relationship. Mater Struct 43(9):1191–1202. doi:10.​1617/​s11527-010-9654-0 CrossRef
    De Belie N, De Muynck W (2009) Crack repair in concrete using biodeposition, Proc 2nd Int Conf Concr Repair, Rehab, Retrofitting 291-292
    De Belie N, Monteny J, Beeldens A, Vincke E, Van Gemert D, Verstraete W (2004) Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem Concr Res 34(12):2223–2236. doi:10.​1016/​j.​cemconres.​2004.​02.​015 CrossRef
    de la Rosa JPM, Warke PA, Smith BJ (2013) Lichen-induced biomodification of calcareous surfaces: bioprotection versus biodeterioration. Prog Phys Geogr 37(3):325–351. doi:10.​1177/​0309133312467660​ CrossRef
    De Muynck W, Cox K, De Belle N, Verstraete W (2008a) Bacterial carbonate precipitation as an alternative surface treatment for concrete. Constr Build Mater 22(5):875–885. doi:10.​1016/​j.​conbuildmat.​2006.​12.​011 CrossRef
    De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136. doi:10.​1016/​j.​ecoleng.​2009.​02.​006 CrossRef
    De Muynck W, Debrouwer D, De Belie N, Verstraete W (2008b) Bacterial carbonate precipitation improves the durability of cementitious materials. Cem Concr Res 38(7):1005–1014. doi:10.​1016/​j.​cemconres.​2008.​03.​005 CrossRef
    De Muynck W, Leuridan S, Van Loo D, Verbeken K, Cnudde V, De Belie N, Verstraete W (2011) Influence of pore structure on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Environ Microbiol 77(19):6808–6820. doi:10.​1128/​aem.​00219-11 CrossRef PubMed PubMedCentral
    De Muynck W, Verbeken K, De Belie N, Verstraete W (2010b) Influence of urea and calcium dosage on the effectiveness of bacterially induced carbonate precipitation on limestone. Ecol Eng 36(2):99–111. doi:10.​1016/​j.​ecoleng.​2009.​03.​025 CrossRef
    De Muynck W, Verbeken K, De Belie N, Verstraete W (2013) Influence of temperature on the effectiveness of a biogenic carbonate surface treatment for limestone conservation. Appl Microbiol Biotechnol 97(3):1335–1347. doi:10.​1007/​s00253-012-3997-0 CrossRef PubMed
    DeJong JT, Fritzges MB, Nusslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392. doi:10.​1061/​(asce)1090-0241(2006)132:​11(1381) CrossRef
    DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2):197–210. doi:10.​1016/​j.​ecoleng.​2008.​12.​029 CrossRef
    Dhami NK, Reddy MS, Mukherjee A (2012) Improvement in strength properties of ash bricks by bacterial calcite. Ecol Eng 39:31–35. doi:10.​1016/​j.​ecoleng.​2011.​11.​011 CrossRef
    Dick J, De Windt W, De Graef B, Saveyn H, Van der Meeren P, De Belie N, Verstraete W (2006) Bio-deposition of a calcium carbonate layer on degraded limestone by Bacillus species. Biodegradation 17(4):357–367. doi:10.​1007/​s10532-005-9006-x CrossRef PubMed
    Ersan YC, Da Silva FB, Boon N, Verstraete W, De Belie N (2015d) Screening of bacteria and concrete compatible protection materials. Constr Build Mater 88:196–203. doi:10.​1016/​j.​conbuildmat.​2015.​04.​027 CrossRef
    Ersan YC, de Belie N, Boon N (2015a) Microbially induced CaCO3 precipitation through denitrification: an optimization study in minimal nutrient environment. Biochem Eng J 101:108–118. doi:10.​1016/​j.​bej.​2015.​05.​006 CrossRef
    Ersan YC, Gruyaert E, Louis G, Lors C, De Belie N, Boon N (2015b) Self-protected nitrate reducing culture for intrinsic repair of concrete cracks. Front Microbiol:6. doi:10.​3389/​fmicb.​2015.​01228
    Ersan YC, Verbruggen H, De Graeve I, Verstraete W, De Belie N, Boon N (2015c) Nitrate reducing CaCO3 precipitating bacteria survive in mortar and inhibit steel corrosion. Cem Concr Res (Accepted with minor revisions)
    Farmani F, Bonakdarpour B, Ramezanianpour AA (2015) pH reduction through amendment of cement mortar with silica fume enhances its biological treatment using bacterial carbonate precipitation. Mater Struct 48(10):3205–3215. doi:10.​1617/​s11527-014-0391-7 CrossRef
    Ferris FG, Phoenix V, Fujita Y, Smith RW (2004) Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20 degrees C in artificial groundwater. Geochim Cosmochim Acta 68(8):1701–1710. doi:10.​1016/​s0016-7037(00)00503-9 CrossRef
    Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. In: Dove PM, DeYoreo JJ, Weiner S (eds) Biominer Rev Miner Geochem, vol 54, pp 95–114
    Frankel RB, Bazylinski DA, Schuler D (1998) Biomineralization of magnetic iron minerals in bacteria. Supramol Sci 5(3–4):383–390. doi:10.​1016/​s0968-5677(98)00036-4 CrossRef
    Ghosh P, Mandal S, Chattopadhyay BD, Pal S (2005) Use of microorganism to improve the strength of cement mortar. Cem Concr Res 35(10):1980–1983. doi:10.​1016/​j.​cemconres.​2005.​03.​005 CrossRef
    Ghosh S, Biswas M, Chattopadhyay BD, Mandal S (2009) Microbial activity on the microstructure of bacteria modified mortar. Cem Concr Compos 31(2):93–98. doi:10.​1016/​j.​cemconcomp.​2009.​01.​001 CrossRef
    Grabiec AM, Klama J, Zawal D, Krupa D (2012) Modification of recycled concrete aggregate by calcium carbonate biodeposition. Constr Build Mater 34:145–150. doi:10.​1016/​j.​conbuildmat.​2012.​02.​027 CrossRef
    Gutierrez-Padilla MGD, Bielefeldt A, Ovtchinnikov S, Hernandez M, Silverstein J (2010) Biogenic sulfuric acid attack on different types of commercially produced concrete sewer pipes. Cem Concr Res 40(2):293–301. doi:10.​1016/​j.​cemconres.​2009.​10.​002 CrossRef
    Hammes F, Boon N, de Villiers J, Verstraete W, Siciliano SD (2003) Strain-specific ureolytic microbial calcium carbonate precipitation. Appl Environ Microbiol 69(8):4901–4909. doi:10.​1128/​aem.​69.​8.​4901-4909.​2003 CrossRef PubMed PubMedCentral
    Harkes MP, van Paassen LA, Booster JL, Whiffin VS, van Loosdrecht MCM (2010) Fixation and distribution of bacterial activity in sand to induce carbonate precipitation for ground reinforcement. Ecol Eng 36(2):112–117. doi:10.​1016/​j.​ecoleng.​2009.​01.​004 CrossRef
    Hudon E, Mirza S, Frigon D (2011) Biodeterioration of concrete sewer pipes: state of the art and research needs. J Pipeline Syst Eng Pract 2(2):42–52. doi:10.​1061/​(asce)ps.​1949-1204.​0000072 CrossRef
    Jayakumar S, Saravanane R (2010) Biodeterioration of coastal concrete structures by marine green algae. Int J Civil Eng 8(4):352–361
    Jimenez-Lopez C, Jroundi F, Pascolini C, Rodriguez-Navarro C, Pinar-Larrubia G, Rodriguez-Gallego M, Gonzalez-Munoz MT (2008) Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. Int Biodeterior Biodegrad 62(4):352–363. doi:10.​1016/​j.​ibiod.​2008.​03.​002 CrossRef
    Jimenez-Lopez C, Rodriguez-Navarro C, Pinar G, Carrillo-Rosua FJ, Rodriguez-Gallego M, Gonzalez-Munoz MT (2007) Consolidation of degraded ornamental porous limestone stone by calcium carbonate precipitation induced by the microbiota inhabiting the stone. Chemosphere 68(10):1929–1936. doi:10.​1016/​j.​chemosphere.​2007.​02.​044 CrossRef PubMed
    Jonkers HM, Schlangen E (2007) Self-healing of cracked concrete: a bacterial approach, vol 1–3,
    Jonkers HM, Schlangen E (2008a) Properties and micro-structural analysis of organic compound-enriched self-healing concrete, Int Conf Microstruct Related Durab Cem Compos p 243–252
    Jonkers HM, Schlangen E (2008b) In: Walraven, Stoelhorst (eds) Development of a bacteria-based self healing concrete in tailor made concrete structutres. Taylor and Francis Group, London
    Jonkers HM, Schlangen E (2009) A two component bacteria-based self-healing concrete, Concr Repair Rehab Retrofit II, 215–220.
    Jonkers HM, Thijssen A, Muyzer G, Copuroglu O, Schlangen E (2010) Application of bacteria as self-healing agent for the development of sustainable concrete. Ecol Eng 36(2):230–235. doi:10.​1016/​j.​ecoleng.​2008.​12.​036 CrossRef
    Kalagri A, Miltiadou-Fezans A, Vintzileou E (2010) Design and evaluation of hydraulic lime grouts for the strengthening of stone masonry historic structures. Mater Struct 43(8):1135–1146. doi:10.​1617/​s11527-009-9572-1 CrossRef
    Karatas I (2008) Microbiological improvement of the physical properties of soils. PhD thesis(Arizona State University, US)
    Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth-Sci Rev 43(3–4):91–121. doi:10.​1016/​s0012-8252(97)00036-6 CrossRef
    Krishnapriya S, Babu DLV, Arulraj GP (2015) Isolation and identification of bacteria to improve the strength of concrete. Microbiol Res 174:48–55. doi:10.​1016/​j.​micres.​2015.​03.​009 CrossRef PubMed
    Kumar VR, Bhuvaneshwari B, Maheswaran S, Palani GS, Ravisankar K, Iyer NR (2011) An overview of techniques based on biomimetics for sustainable development of concrete. Current Sci 101(6):741–747
    Le Metayer-Levrel G, Castanier S, Orial G, Loubiere JF, Perthuisot JP (1999) Applications of bacterial carbonatogenesis to the protection and regeneration of limestones in buildings and historic patrimony. Sediment Geol 126(1–4):25–34. doi:10.​1016/​s0037-0738(99)00029-9 CrossRef
    Mansch R, Beck E (1998) Biodeterioration of natural stone with special reference to nitrifying bacteria. Biodegrad 9(1):47–64. doi:10.​1023/​a:​1008381525192 CrossRef
    Moropoulou A, Kouloumbi N, Haralampopoulos G, Konstanti A, Michailidis P (2003) Criteria and methodology for the evaluation of conservation interventions on treated porous stone susceptible to salt decay. Prog Organ Coat 48(2–4):259–270. doi:10.​1016/​s0300-9440(03)00110-3 CrossRef
    Nosouhian F, Mostofinejad D, Hasheminejad H (2015) Influence of biodeposition treatment on concrete durability in a sulphate environment. Biosyst Eng 133:141–152. doi:10.​1016/​j.​biosystemseng.​2015.​03.​008 CrossRef
    Okwadha GDO, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148. doi:10.​1016/​j.​chemosphere.​2010.​09.​066 CrossRef PubMed
    Park SJ, Park YM, Chun WY, Kim WJ, Ghim SY (2010) Calcite-forming bacteria for compressive strength improvement in mortar. J Microbiol Biotechnol 20(4):782–788. doi:10.​4014/​jmb.​0911.​11015 PubMed
    Pei RT, Liu J, Wang SS (2015) Use of bacterial cell walls as a viscosity-modifying admixture of concrete. Cem Concr Compos 55:186–195. doi:10.​1016/​j.​cemconcomp.​2014.​08.​007 CrossRef
    Pei RT, Liu J, Wang SS, Yang MJ (2013) Use of bacterial cell walls to improve the mechanical performance of concrete. Cem Concr Compos 39:122–130. doi:10.​1016/​j.​cemconcomp.​2013.​03.​024 CrossRef
    Piervittori R, Favero-Longo SE, Gazzano C (2009) Lichens and biodeterioration of stonework: a review. Chimica Oggi-Chem Today 27(6):8–11
    Qian CX, Wang JY, Wang RX, Cheng L (2009) Corrosion protection of cement-based building materials by surface deposition of CaCO3 by Bacillus pasteurii. Mater Sci Eng C-Biomim Supramol Syst 29(4):1273–1280. doi:10.​1016/​j.​msec.​2008.​10.​025 CrossRef
    Qiu JS, Tng DQS, Yang EH (2014) Surface treatment of recycled concrete aggregates through microbial carbonate precipitation. Constr Build Mater 57:144–150. doi:10.​1016/​j.​conbuildmat.​2014.​01.​085 CrossRef
    Ramachandran SK, Ramakrishnan V, Bang SS (2001) Remediation of concrete using micro-organisms. ACI Mater J 98(1):3–9
    Ramakrishnan V, Ramesh KP, Bang SS (2001) Bacterial concrete. In: Wilson AR, Asanuma H (eds) Smart materials. Proc Soc Photo-Optical Instrum Eng (Spie), vol 4234, pp 168–176
    Revertegat E, Richet C, Gegout P (1992) Effect of pH on the durability of cement pastes. Cem Concr Res 22(2–3):259–272. doi:10.​1016/​0008-8846(92)90064-3 CrossRef
    Rodriguez-Navarro C, Rodriguez-Gallego M, Ben Chekroun K, Gonzalez-Munoz MT (2003) Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Appl Environ Microbiol 69(4):2182–2193. doi:10.​1128/​aem.​69.​4.​2182-2193.​2003
    Sarode DD, Mukherjee A (2009) Microbial precipitation for repairs of concrete structures. Concr Sol - Chapter 33 ISBN: 978–0-415-55082-6. CRC Press
    Scrivener K, De Belie N (2013) Bacteriogenic sulfuric acid attack of cementitious materials in sewage systems. In: Alexander M, Bertron A, De Belie N (eds) Performance of cement-based materials in aggressive aqueous environments. RILEM State-of-the-Art Reports, vol 10. Springer, Netherlands, pp. 305–318CrossRef
    Setlow P (1994) Mechanisms which contribute to the long-term survival of spores of Bacillus species. J Appl Bacteriol 76:S49–S60. doi:10.​1111/​j.​1365-2672.​1994.​tb04357.​x CrossRef
    Siddique R, Chahal NK (2011) Effect of ureolytic bacteria on concrete properties. Constr Build Mater 25(10):3791–3801. doi:10.​1016/​j.​conbuildmat.​2011.​04.​010 CrossRef
    Silva FB (2015) Up-scaling the production of bacteria for self-healing concrete application. PhD thesis Ghent University, Ghent, Belgium
    Soleimani S, Isgor OB, Ormeci B (2013b) Resistance of biofilm-covered mortars to microbiologically influenced deterioration simulated by sulfuric acid exposure. Cem Concr Res 53:229–238. doi:10.​1016/​j.​cemconres.​2013.​06.​016 CrossRef
    Soleimani S, Ormeci B, Isgor OB (2013a) Growth and characterization of Escherichia coli DH5 alpha biofilm on concrete surfaces as a protective layer against microbiologically influenced concrete deterioration (MICD). Appl Microbiol Biotechnol 97(3):1093–1102. doi:10.​1007/​s00253-012-4379-3 CrossRef PubMed
    Stumm W, Morgan JJ (1996) Aquatic chemistry, chemical equilibria and rates in natural waters, 3rd edn. John Wiley & Sons, Inc, New York, 1022p
    Van Lancker B (2013) Consolidation of natural stone using microorganisms and nanoparticles. Master Thesis Ghent Unversity, Ghent, Belgium
    Van Paassen LA, Daza CM, Staal M, Sorokin DY, van der Zon W, van Loosdrecht MCM (2010) Potential soil reinforcement by biological denitrification. Ecol Eng 36(2):168–175. doi:10.​1016/​j.​ecoleng.​2009.​03.​026 CrossRef
    Van Tittelboom K, De Belie N, De Muynck W, Verstraete W (2010) Use of bacteria to repair cracks in concrete. Cem Concr Res 40(1):157–166. doi:10.​1016/​j.​cemconres.​2009.​08.​025 CrossRef
    Verbaendert I, Boon N, De Vos P, Heylen K (2011) Denitrification is a common feature among members of the genus Bacillus. Syst Appl Microbiol 34(5):385–391. doi:10.​1016/​j.​syapm.​2011.​02.​003 CrossRef PubMed
    Vintzileou E, Miltiadou-Fezans A (2008) Mechanical properties of three-leaf stone masonry grouted with ternary or hydraulic lime-based grouts. Eng Struct 30(8):2265–2276. doi:10.​1016/​j.​engstruct.​2007.​11.​003 CrossRef
    Vivar I, Borrego S, Ellis G, Moreno DA, Garcia AM (2013) Fungal biodeterioration of color cinematographic films of the cultural heritage of Cuba. Int Biodeterior Biodegrad 84:372–380. doi:10.​1016/​j.​ibiod.​2012.​05.​021 CrossRef
    Wang JY (2013) Self-healing concrete by means of immobilized carbonate precipitating bacteria. PhD thesis Ghent University, Ghent, Belgium
    Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2010) Potential of applying bacteria to heal cracks in concrete. In: Proc of the 2nd Int Conf Sustain Constr Mater Technol. Ancona, Italy, pp. 1807–1818
    Wang JY, Van Tittelboom K, De Belie N, Verstraete W (2012a) Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Constr Build Mater 26(1):532–540. doi:10.​1016/​j.​conbuildmat.​2011.​06.​054
    Wang JY, De Belie N, Verstraete W (2012b) Diatomaceous earth as a protective vehicle for bacteria applied for self-healing concrete. J Ind Microbiol Biotechnol 39(4):567–577. doi:10.​1007/​s10295-011-1037-1 CrossRef PubMed
    Wang JY, Soens H, Verstraete W, De Belie N (2014a) Self-healing concrete by use of microencapsulated bacterial spores. Cem Concr Res 56:139–152. doi:10.​1016/​j.​cemconres.​2013.​11.​009
    Wang JY, Snoeck D, Van Vlierberghe S, Verstraete W, De Belie N (2014b) Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete. Constr Build Mater 68:110–119. doi:10.​1016/​j.​conbuildmat.​2014.​06.​018
    Wang JY, Dewanckele J, Cnudde V, Van Vlierberghe S, Verstraete W, De Belie N (2014c) X-ray computed tomography proof of bacterial-based self-healing in concrete. Cem Concr Compos 53:289–304. doi:10.​1016/​j.​cemconcomp.​2014.​07.​014 CrossRef
    Wang JY, Mignon A, Snoeck D, Wiktor V, Van Vliergerghe S, Boon N, De Belie N (2015) Application of modified-alginate encapsulated carbonate producing bacteria in concrete: a promising strategy for crack self-healing. Front Microbiol 6 doi:10.3389/fmicb.2015.01088
    Whiffin VS (2004) Microbial CaCO3 precipitation for the production of biocement. School of Biological Sciences and Biotechnology, Murdoch University, Perth
    Whiffin VS, van Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(5):417–423. doi:10.​1080/​0149045070143650​5 CrossRef
    Wiktor V, Jonkers HM (2011) Quantification of crack-healing in novel bacteria-based self-healing concrete. Cem Concr Compos 33(7):763–770. doi:10.​1016/​j.​cemconcomp.​2011.​03.​012 CrossRef
    Wiktor V, Jonkers HM (2012) Determination of the crack self-healing capacity of bacterial concrete, Concr Sol 331-334
    Zamarreno DV, Inkpen R, May E (2009) Carbonate crystals precipitated by freshwater bacteria and their use as a limestone consolidant. Appl Environ Microbiol 75(18):5981–5990. doi:10.​1128/​aem.​02079-08 CrossRef PubMed PubMedCentral
    Zammit G, Sanchez-Moral S, Albertano P (2011) Bacterially mediated mineralisation processes lead to biodeterioration of artworks in Maltese catacombs. Sci Total Environ 409(14):2773–2782. doi:10.​1016/​j.​scitotenv.​2011.​03.​008 CrossRef PubMed
    Zhu TT, Paulo C, Merroun ML, Dittrich M (2015) Potential application of biomineralization by Synechococcus PCC8806 for concrete restoration. Ecol Eng 82:459–468. doi:10.​1016/​j.​ecoleng.​2015.​05.​017
    Zuo R (2007) Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl Microbiol Biotechnol 76(6):1245–1253. doi:10.​1007/​s00253-007-1130-6 CrossRef PubMed
  • 作者单位:Jianyun Wang (1) (2)
    Yusuf Cagatay Ersan (1) (2)
    Nico Boon (2)
    Nele De Belie (1)

    1. Magnel Laboratory for Concrete Research, Faculty of Engineering and Architecture, Ghent University, Technologiepark Zwijnaarde 904, 9052, Ghent, Belgium
    2. Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Biotechnology
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-0614
文摘
The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700