Brain iron deposition in white matter hyperintensities: a 3-T MRI study
详细信息    查看全文
  • 作者:Shenqiang Yan ; Jianzhong Sun ; Yi Chen ; Magdy Selim ; Min Lou
  • 关键词:White matter hyperintensities ; Leukoaraiosis ; Susceptibility ; weighted imaging ; Transverse relaxation rate ; Iron ; Ageing
  • 刊名:AGE
  • 出版年:2013
  • 出版时间:October 2013
  • 年:2013
  • 卷:35
  • 期:5
  • 页码:1927-1936
  • 全文大小:193KB
  • 参考文献:1. Adams CW (1988) Perivascular iron deposition and other vascular damage in multiple sclerosis. J Neurol Neurosurg Psychiatry 51(2):260-65 CrossRef
    2. Aquino D, Bizzi A, Grisoli M, Garavaglia B, Bruzzone MG, Nardocci N, Savoiardo M, Chiapparini L (2009) Age-related iron deposition in the basal ganglia: quantitative analysis in healthy subjects. Radiology 252(1):165-72 CrossRef
    3. Baba K, Shibata R, Sibuya M (2004) Partial correlation and conditional correlation as measures of conditional independence. Aust New Z J Stat 46(4):657-64. doi:10.1111/j.1467-842X.2004.00360.x CrossRef
    4. Bizzi A, Brooks RA, Brunetti A, Hill JM, Alger JR, Miletich RS, Francavilla TL, Di Chiro G (1990) Role of iron and ferritin in MR imaging of the brain: a study in primates at different field strengths. Radiology 177(1):59-5
    5. Black S, Gao F, Bilbao J (2009) Understanding white matter disease: imaging-pathological correlations in vascular cognitive impairment. Stroke 40(3 Suppl):S48–S52 CrossRef
    6. Chen JC, Hardy PA, Kucharczyk W, Clauberg M, Joshi JG, Vourlas A, Dhar M, Henkelman RM (1993) MR of human postmortem brain tissue: correlative study between T2 and assays of iron and ferritin in Parkinson and Huntington disease. AJNR Am J Neuroradiol 14(2):275-81
    7. Connor JR, Snyder BS, Arosio P, Loeffler DA, LeWitt P (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J Neurochem 65(2):717-24 CrossRef
    8. de Leeuw FE, de Groot JC, Achten E, Oudkerk M, Ramos LM, Heijboer R, Hofman A, Jolles J, van Gijn J, Breteler MM (2001) Prevalence of cerebral white matter lesions in elderly people: a population based magnetic resonance imaging study. The Rotterdam Scan Study. J Neurol Neurosurg Psychiatry 70(1):9-4 CrossRef
    9. de Rochefort L, Liu T, Kressler B, Liu J, Spincemaille P, Lebon V, Wu J, Wang Y (2010) Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med 63(1):194-06
    10. Debette S, Markus HS (2010) The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 341:c3666 CrossRef
    11. DeCarli C, Maisog J, Murphy DG, Teichberg D, Rapoport SI, Horwitz B (1992) Method for quantification of brain, ventricular, and subarachnoid CSF volumes from MR images. J Comput Assist Tomogr 16(2):274-84 CrossRef
    12. DeCarli C, Murphy DG, Tranh M, Grady CL, Haxby JV, Gillette JA, Salerno JA, Gonzales-Aviles A, Horwitz B, Rapoport SI et al (1995) The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology 45(11):2077-084 CrossRef
    13. Dwork AJ, Schon EA, Herbert J (1988) Nonidentical distribution of transferrin and ferric iron in human brain. Neuroscience 27(1):333-45 CrossRef
    14. Erkinjuntti T, Benavente O, Eliasziw M, Munoz DG, Sulkava R, Haltia M, Hachinski V (1996) Diffuse vacuolization (spongiosis) and arteriolosclerosis in the frontal white matter occurs in vascular dementia. Arch Neurol 53(4):325-32 CrossRef
    15. Folstein MF, Folstein SE, McHugh PR (1975) Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 12(3):189-98 CrossRef
    16. Fornage M, Chiang YA, O'Meara ES, Psaty BM, Reiner AP, Siscovick DS, Tracy RP, Longstreth WT Jr (2008) Biomarkers of inflammation and MRI-defined small vessel disease of the brain: the Cardiovascular Health Study. Stroke 39(7):1952-959 CrossRef
    17. Francois C, Nguyen-Legros J, Percheron G (1981) Topographical and cytological localization of iron in rat and monkey brains. Brain Res 215(1-):317-22 CrossRef
    18. Gebril OH, Simpson JE, Kirby J, Brayne C, Ince PG (2011) Brain iron dysregulation and the risk of ageing white matter lesions. Neuromol Med 13(4):289-99 CrossRef
    19. Gelman N, Gorell JM, Barker PB, Savage RM, Spickler EM, Windham JP, Knight RA (1999) MR imaging of human brain at 3.0 T: preliminary report on transverse relaxation rates and relation to estimated iron content. Radiology 210(3):759-67
    20. Haacke EM, Xu Y, Cheng YC, Reichenbach JR (2004) Susceptibility weighted imaging (SWI). Magn Reson Med 52(3):612-18 CrossRef
    21. Haacke EM, Ayaz M, Khan A, Manova ES, Krishnamurthy B, Gollapalli L, Ciulla C, Kim I, Petersen F, Kirsch W (2007) Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 26(2):256-64 CrossRef
    22. Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC (2009) Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1):19-0 CrossRef
    23. Hallgren B, Sourander P (1958) The effect of age on the non-haemin iron in the human brain. J Neurochem 3(1):41-1 CrossRef
    24. Izawa T, Yamate J, Franklin RJ, Kuwamura M (2010) Abnormal iron accumulation is involved in the pathogenesis of the demyelinating dmy rat but not in the hypomyelinating mv rat. Brain Res 1349:105-14 CrossRef
    25. Langkammer C, Krebs N, Goessler W, Scheurer E, Ebner F, Yen K, Fazekas F, Ropele S (2010) Quantitative MR imaging of brain iron: a postmortem validation study. Radiology 257(2):455-62 CrossRef
    26. Langkammer C, Schweser F, Krebs N, Deistung A, Goessler W, Scheurer E, Sommer K, Reishofer G, Yen K, Fazekas F, Ropele S, Reichenbach JR (2012) Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage 62(3):1593-599 CrossRef
    27. Lee J, Koh D, Ong CN (1989) Statistical evaluation of agreement between two methods for measuring a quantitative variable. Comput Biol Med 19(1):61-0 CrossRef
    28. LeVine SM, Chakrabarty A (2004) The role of iron in the pathogenesis of experimental allergic encephalomyelitis and multiple sclerosis. Ann N Y Acad Sci 1012:252-66 CrossRef
    29. LeVine SM, Macklin WB (1990) Iron-enriched oligodendrocytes: a reexamination of their spatial distribution. J Neurosci Res 26(4):508-12 CrossRef
    30. Lou M, Al-Hazzani A, Goddeau RP, Novak V, Selim M (2009) Relationship between white-matter hyperintensities and hematoma volume and growth in patients with intracerebral hemorrhage. Stroke 41(1):34-0 CrossRef
    31. Matsusue E, Sugihara S, Fujii S, Ohama E, Kinoshita T, Ogawa T (2006) White matter changes in elderly people: MR-pathologic correlations. Magn Reson Med Sci 5(2):99-04 CrossRef
    32. Ogg RJ, Langston JW, Haacke EM, Steen RG, Taylor JS (1999) The correlation between phase shifts in gradient-echo MR images and regional brain iron concentration. Magn Reson Imaging 17(8):1141-148 CrossRef
    33. Pfefferbaum A, Adalsteinsson E, Rohlfing T, Sullivan EV (2009) MRI estimates of brain iron concentration in normal aging: comparison of field-dependent (FDRI) and phase (SWI) methods. NeuroImage 47(2):493-00 CrossRef
    34. Pu Y, Liu Y, Hou J, Fox PT, Gao JH (2000) Demonstration of the medullary lamellae of the human red nucleus with high-resolution gradient-echo MR imaging. AJNR Am J Neuroradiol 21(7):1243-247
    35. Selim M, Yeatts S, Goldstein JN, Gomes J, Greenberg S, Morgenstern LB, Schlaug G, Torbey M, Waldman B, Xi G, Palesch Y (2011) Safety and tolerability of deferoxamine mesylate in patients with acute intracerebral hemorrhage. Stroke 42(11):3067-074 CrossRef
    36. Singh AV, Zamboni P (2009) Anomalous venous blood flow and iron deposition in multiple sclerosis. J Cereb Blood Flow Metab 29(12):1867-878 CrossRef
    37. Vernooij MW, Ikram MA, Tanghe HL, Vincent AJ, Hofman A, Krestin GP, Niessen WJ, Breteler MM, van der Lugt A (2007) Incidental findings on brain MRI in the general population. N Engl J Med 357(18):1821-828 CrossRef
    38. Wen W, Sachdev P (2004) The topography of white matter hyperintensities on brain MRI in healthy 60- to 64-year-old individuals. NeuroImage 22(1):144-54 CrossRef
    39. Xu H, Stamova B, Jickling G, Tian Y, Zhan X, Ander BP, Liu D, Turner R, Rosand J, Goldstein LB, Furie KL, Verro P, Johnston SC, Sharp FR, Decarli CS (2010) Distinctive RNA expression profiles in blood associated with white matter hyperintensities in brain. Stroke 41(12):2744-749 CrossRef
    40. Yan SQ, Sun JZ, Yan YQ, Wang H, Lou M (2012) Evaluation of brain iron content based on magnetic resonance imaging (MRI): comparison among phase value, R2* and magnitude signal intensity. PLoS One 7(2):e31748 CrossRef
    41. Yao B, Li TQ, Gelderen P, Shmueli K, de Zwart JA, Duyn JH (2009) Susceptibility contrast in high field MRI of human brain as a function of tissue iron content. NeuroImage 44(4):1259-266 CrossRef
  • 作者单位:Shenqiang Yan (1)
    Jianzhong Sun (2)
    Yi Chen (1)
    Magdy Selim (3)
    Min Lou (1)

    1. Department of Neurology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, #88 Jiefang Road, Hangzhou, China
    2. Department of Radiology, School of Medicine, The 2nd Affiliated Hospital of Zhejiang University, Hangzhou, China
    3. Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
  • ISSN:1574-4647
文摘
Iron accumulation has been implicated in the pathogenesis of demyelinating diseases. Therefore, we hypothesized that abnormal high cerebral iron deposition may be involved in the development of white matter hyperintensities (WMHs). We used R2* relaxometry to assess whether iron levels in different brain regions correlate with the severity of WMHs. This technique has been recently validated in a postmortem study to demonstrate in vivo brain iron accumulation in a quantitative manner. Fifty-two consecutive WMH patients and 30 healthy controls with 3-T magnetic resonance imaging (MRI) were reviewed in this study. We measured WMH volume (as a marker of the severity of WMHs) on MRI, and the transverse relaxation rate R2*, as an estimate of iron content in seven brain regions. We found that R2* in globus pallidus was associated with WMH volume after adjusting for sociodemographic variables (partial correlation coefficient = 0.521, P-lt;-.001) and in a multivariate analysis adjusted for common vascular risk factors (partial correlation coefficient = 0.572, P--.033). Regional R2* in globus pallidus was also significantly higher in WMHs than in controls (P--.042). Iron content in globus pallidus, as assessed by R2* relaxometry, is independently linked to the severity of WMHs in our cohort of patients, suggesting that iron deposition in the brain may play a role in the pathogenesis of WMHs. This may provide prognostic information on patients with WMHs and may have implications for therapeutic interventions in WMHs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700