Applications of carbon nanotubes in high performance lithium ion batteries
详细信息    查看全文
  • 作者:Yang Wu (1)
    Jiaping Wang (1)
    Kaili Jiang (1)
    Shoushan Fan (1)
  • 关键词:lithium ion battery ; carbon nanotube ; composite ; conductive additive ; structural scaffold
  • 刊名:Frontiers of Physics
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:9
  • 期:3
  • 页码:351-369
  • 全文大小:
  • 参考文献:1. M. Armand and J. M. Tarascon, Nature, 2008, 451(7179): 652 CrossRef
    2. B. Dunn, H. Kamath, and J.-M. Tarascon, Science, 334(6058): 928
    3. J. M. Tarascon and M. Armand, Nature, 2001, 414(6861): 359 CrossRef
    4. M. S. Whittingham, Science, 1976, 192(4244): 1126 CrossRef
    5. M. S. Whittingham, Chem. Rev., 2004, 104(10): 4271 CrossRef
    6. K. Ozawa, Solid State Ion., 1994, 69(3鈥?): 212 CrossRef
    7. M. Winter, J. O. Besenhard, M. E. Spahr, and P. Novak, Adv. Mater., 1998, 10(10): 725 CrossRef
    8. H. Dai, Surface Science, 2002, 500(1鈥?): 218 CrossRef
    9. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio, Nature, 1996, 382(6586): 54 CrossRef
    10. M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S. Ruoff, Science, 2000, 287(5453): 637 CrossRef
    11. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature, 1996, 381(6584): 678 CrossRef
    12. R. Fong, U. v. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1990, 137(7): 2009 CrossRef
    13. Z. X. Shu, R. S. McMillan, and J. J. Murray, J. Electrochem. Soc., 1993, 140(4): 922 CrossRef
    14. M. S. Dresselhaus and G. Dresselhaus, Adv. Phys., 1981, 30(2): 139 CrossRef
    15. N. A. Kaskhedikar and J. Maier, Adv. Mater., 2009, 21(25鈥?6): 2664 CrossRef
    16. M. Armand and P. Touzain, Materials Science and Engineering, 1977, 31(0): 319 CrossRef
    17. L. Pauling, Proc. Natl. Acad. Sci. USA, 1966, 56(6): 1646 CrossRef
    18. J. R. Dahn, Phys. Rev. B, 1991, 44(17): 9170 CrossRef
    19. N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. McGhie, and J. E. Fischer, Materials Science and Engineering, 1979, 40(1): 1 CrossRef
    20. T. Ohzuku, Y. Iwakoshi, and K. Sawai, J. Electrochem. Soc., 1993, 140(9): 2490 CrossRef
    21. K. Persson, Y. Hinuma, Y. S. Meng, A. Van der Ven, and G. Ceder, Phys. Rev. B, 2010, 82(12)
    22. R. C. Boehm and A. Banerjee, J. Chem. Phys., 1992, 96(2): 1150 CrossRef
    23. V. A. Nalimova, D. Guerard, M. Lelaurain, and O. V. Fateev, Carbon, 1995, 33(2): 177 CrossRef
    24. V. V. Avdeev, V. A. Nalimova, and K. N. Semenenko, High Pressure Res., 1990, 6(1): 11 CrossRef
    25. Y. Nagata, Y. Ohnishi, H. Hatori, M. Shiraishi, and T. Kajiyama, Kobunshi Ronbunshu, 1996, 53(5): 302 CrossRef
    26. A. Yasuda, N. Kawase, F. Banhart, W. Mizutani, T. Shimizu, and H. Tokumoto, J. Phys. Chem. B, 2002, 106(8): 1849 CrossRef
    27. R. E. Franklin, Proceedings of the Royal Society of London, Series A: Mathematical and Physical Sciences, 1951, 209(1097): 196 CrossRef
    28. K. Tatsumi, N. Iwashita, H. Sakaebe, H. Shioyama, S. Higuchi, A. Mabuchi, and H. Fujimoto, J. Electrochem. Soc., 1995, 142(3): 716 CrossRef
    29. N. Takami, A. Satoh, M. Hara, and T. Ohsaki, J. Electrochem. Soc., 1995, 142(2): 371 CrossRef
    30. A. Satoh, N. Takami, and T. Ohsaki, Solid State Ion., 1995, 80(3): 291 CrossRef
    31. A. Mabuchi, K. Tokumitsu, H. Fujimoto, and T. Kasuh, J. Electrochem. Soc., 1995, 142(4): 1041 CrossRef
    32. J. R. Dahn, T. Zheng, Y. Liu, and J. S. Xue, Science, 1995, 270(5236): 590 CrossRef
    33. T. D. Tran, J. H. Feikert, X. Song, and K. Kinoshita, J. Electrochem. Soc., 1995, 142(10): 3297 CrossRef
    34. C. Kim, T. Fujino, K. Miyashita, T. Hayashi, M. Endo, and M. S. Dresselhaus, J. Electrochem. Soc., 2000, 147(4): 1257 CrossRef
    35. M. K. Song and K. T. No, J. Electrochem. Soc., 2004, 151(10): A1696 CrossRef
    36. T. Zheng, Y. Liu, E. W. Fuller, S. Tseng, U. v. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1995, 142(8): 2581 CrossRef
    37. N. Takami, A. Satoh, T. Ohsaki, and M. Kanda, Electrochim. Acta, 1997, 42(16): 2537 CrossRef
    38. S. Iijima, Nature, 1991, 354(6348): 56 CrossRef
    39. V. Meunier, J. Kephart, C. Roland, and J. Bernholc, Phys. Rev. Lett., 2002, 88(7)
    40. Z. Zhou, X. P. Gao, J. Yan, D. Y. Song, and M. Morinaga, Carbon, 2004, 42(12鈥?3): 2677 CrossRef
    41. C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deya, Chem. Phys. Lett., 2003, 374(5鈥?): 548 CrossRef
    42. T. Kar, J. Pattanayak, and S. Scheiner, Journal of Physical Chemistry A, 2001, 105(45): 10397 CrossRef
    43. G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac, and B. Simon, Chem. Phys. Lett., 1999, 312(1): 14 CrossRef
    44. A. S. Claye, J. E. Fischer, C. B. Huffman, A. G. Rinzler, and R. E. Smalley, J. Electrochem. Soc., 2000, 147(8): 2845 CrossRef
    45. B. Gao, C. Bower, J. D. Lorentzen, L. Fleming, A. Kleinhammes, X. P. Tang, L. E. McNeil, Y. Wu, and O. Zhou, Chem. Phys. Lett., 2000, 327(1鈥?): 69 CrossRef
    46. G. L. Che, B. B. Lakshmi, E. R. Fisher, and C. R. Martin, Nature, 1998, 393(6683): 346 CrossRef
    47. E. Frackowiak, S. Gautier, H. Gaucher, S. Bonnamy, and F. Beguin, Carbon, 1999, 37(1): 61 CrossRef
    48. E. Frackowiak and F. Beguin, Carbon, 2002, 40(10): 1775 CrossRef
    49. B. Gao, A. Kleinhammes, X. P. Tang, C. Bower, L. Fleming, Y. Wu, and O. Zhou, Chem. Phys. Lett., 1999, 307(3鈥?): 153 CrossRef
    50. G. X. Wang, J. H. Ahn, J. Yao, M. Lindsay, H. K. Liu, and S. X. Dou, J. Power Sources, 2003, 119: 16 CrossRef
    51. C. Masarapu, V. Subramanian, H. W. Zhu, and B. Q. Wei, Advanced Functional Materials, 2009, 19(7): 1008 CrossRef
    52. S. B. Yang, H. H. Song, X. H. Chen, A. V. Okotrub, and L. G. Bulusheva, Electrochim. Acta, 2007, 52(16): 5286 CrossRef
    53. K. L. Jiang, Q. Q. Li, and S. S. Fan, Nature, 2002, 419(6909): 801 CrossRef
    54. K. L. Jiang, J. P. Wang, Q. Q. Li, L. A. Liu, C. H. Liu, and S. S. Fan, Adv. Mater., 2011, 23(9): 1154 CrossRef
    55. H. Zhang, G. P. Cao, and Y. S. Yang, Energy Environ. Sci., 2009, 2(9): 932 CrossRef
    56. S. H. Ng, J. Wang, Z. P. Guo, G. X. Wang, and H. K. Liu, Electrochim. Acta, 2005, 51(1): 23 CrossRef
    57. S. Y. Chew, S. H. Ng, J. Z. Wang, P. Novak, F. Krumeich, S. L. Chou, J. Chen, and H. K. Liu, Carbon, 2009, 47(13): 2976 CrossRef
    58. B. J. Landi, R. A. Dileo, C. M. Schauerman, C. D. Cress, M. J. Ganter, and R. P. Raffaelle, J. Nanosci. Nanotechnol., 2009, 9(6): 3406 CrossRef
    59. J. Chen, A. I. Minett, Y. Liu, C. Lynam, P. Sherrell, C. Wang, and G. G. Wallace, Adv. Mater., 2008, 20(3): 566 CrossRef
    60. G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, P. M. He, and W. Z. Li, J. Electrochem. Soc., 1999, 146(5): 1696 CrossRef
    61. J. Zhao, A. Buldum, J. Han, and J. Ping Lu, Phys. Rev. Lett., 2000, 85(8): 1706 CrossRef
    62. J. Li, C. Wu, and L. Guan, J. Phys. Chem. C, 2009, 113(42): 18431 CrossRef
    63. X. X. Wang, J. N. Wang, H. Chang, and Y. F. Zhang, Adv. Funct. Mater., 2007, 17(17): 3613 CrossRef
    64. D. T. Welna, L. T. Qu, B. E. Taylor, L. M. Dai, and M. F. Durstock, J. Power Sources, 2011, 196(3): 1455 CrossRef
    65. I. Lahiri, S. W. Oh, J. Y. Hwang, S. Cho, Y. K. Sun, R. Banerjee, and W. Choi, ACS Nano, 2010, 4(6): 3440 CrossRef
    66. Mukhopadhyay, I., N. Hoshino, S. Kawasaki, F. Okino, W. K. Hsu, and H. Touhara, J. Electrochem. Soc., 2002, 149(1): A39 CrossRef
    67. L. G. Bulusheva, A. V. Okotrub, A. G. Kurenya, H. K. Zhang, H. J. Zhang, X. H. Chen, and H. H. Song, Carbon, 2011, 49(12): 4013 CrossRef
    68. X. L. Li, F. Y. Kang, X. D. Bai, and W. Shen, Electrochem. Commun., 2007, 9(4): 663 CrossRef
    69. B. Jin, E. M. Jin, K. H. Park, and H. B. Gu, Electrochem. Commun., 2008, 10(10): 1537 CrossRef
    70. Liu, Y. J., X. H. Li, H. J. Guo, Z. X. Wang, W. J. Peng, Y. Yang, and R. F. Liang, J. Power Sources, 2008, 184(2): 522 CrossRef
    71. Y. Feng, Mater. Chem. Phys., 2010, 121(1鈥?): 302 CrossRef
    72. T. Muraliganth, A. V. Murugan, and A. Manthiram, J. Mater. Chem., 2008, 18(46): 5661 CrossRef
    73. G. P. Wang, Q. T. Zhang, Z. L. Yu, and M. Z. Qu, Solid State Ion., 2008, 179(7鈥?): 263
    74. K. Sheem, Y. H. Lee, and H. S. Lim, J. Power Sources, 2006, 158(2): 1425 CrossRef
    75. J. H. Park, S. Y. Lee, J. H. Kim, S. Ahn, J. S. Park, and Y. U. Jeong, J. Solid State Electrochem., 2010, 14(4): 593 CrossRef
    76. J. H. Lee, G. S. Kim, Y. M. Choi, W. Il Park, J. A. Rogers, and U. Paik, J. Power Sources, 2008, 184(1): 308 CrossRef
    77. X. L. Li, F. Y. Kang, and W. C. Shen, Carbon, 2006, 44(7): 1334 CrossRef
    78. X. L. Li, F. Y. Kang, and W. C. Shen, Electrochem. Solid State Lett., 2006, 9(3): A126 CrossRef
    79. A. Varzi, C. Taubert, M. Wohlfahrt-Mehrens, M. Kreis, and W. Schutz, J. Power Sources, 2011, 196(6): 3303 CrossRef
    80. J. Y. Eom, J. W. Park, H. S. Kwon, and S. Rajendran, J. Electrochem. Soc., 2006, 153(9): A1678 CrossRef
    81. C. Sotowa, G. Origi, M. Takeuchi, Y. Nishimura, K. Takeuchi, I. Y. Jang, Y. J. Kim, T. Hayashi, Y. A. Kim, M. Endo, and M. S. Dresselhaus, ChemSusChem, 2008, 1(11): 911 CrossRef
    82. X. B. Zhang, K. L. Jiang, C. Teng, P. Liu, L. Zhang, J. Kong, T. H. Zhang, Q. Q. Li, and S. S. Fan, Adv. Mater., 2006, 18(12): 1505 CrossRef
    83. K. Liu, Y. H. Sun, L. Chen, C. Feng, X. F. Feng, K. L. Jiang, Y. G. Zhao, and S. S. Fan, Nano Lett., 2008, 8(2): 700 CrossRef
    84. K. Wang, Y. Wu, S. Luo, X. F. He, J. P. Wang, K. L. Jiang, and S. S. Fan, J. Power Sources, 2013, 233(1): 209 CrossRef
    85. S. Luo, K. Wang, J. Wang, K. Jiang, Q. Li, and S. Fan, Adv. Mater., 2012, 24(17): 2294 CrossRef
    86. M. D. Lima, S. Fang, X. Lepro, C. Lewis, R. Ovalle-Robles, J. Carretero-Gonzalez, E. Castillo-Martinez, M. E. Kozlov, J. Oh, N. Rawat, C. S. Haines, M. H. Haque, V. Aare, S. Stoughton, A. A. Zakhidov, and R. H. Baughman, Science, 2011, 331(6013): 51 CrossRef
    87. Z. Chen, D. Q. Zhang, X. L. Wang, X. L. Jia, F. Wei, H. X. Li, and Y. F. Lu, Adv. Mater., 2012, 24(15): 2030 CrossRef
    88. O. Toprakci, H. A. K. Toprakci, L.W. Ji, G. J. Xu, Z. Lin, and X.W. Zhang, ACS AppliedMaterials & Interfaces, 2012, 4(3): 1273 CrossRef
    89. P. G. Bruce, B. Scrosati, and J.-M. Tarascon, Angewandte Chemie International Edition, 2008, 47(16): 2930 CrossRef
    90. C. M. Hayner, X. Zhao, and H. H. Kung, Annual Review of Chemical and Biomolecular Engineering, 3(1): 445
    91. S.-D. Seo, G.-H. Lee, A.-H. Lim, K.-M. Min, J.-C. Kim, H.-W. Shim, K.-S. Park, and D.-W. Kim, RSC Advances, 2(8): 3315
    92. W. X. Chen, J. Y. Lee, and Z. Liu, Electrochem. Commun., 2002, 4(3): 260 CrossRef
    93. M. S. Park, S. A. Needham, G. X. Wang, Y. M. Kang, J. S. Park, S. X. Dou, and H. K. Liu, Chem. Mat., 2007, 19(10): 2406 CrossRef
    94. O. Crosnier, T. Brousse, X. Devaux, P. Fragnaud, and D. M. Schleich, J. Power Sources, 2001, 94(2): 169 CrossRef
    95. J. O. Besenhard, J. Yang, and M. Winter, J. Power Sources, 1997, 68(1): 87 CrossRef
    96. T. P. Kumar, R. Ramesh, Y. Y. Lin, and G. T. K. Fey, Electrochem. Commun., 2004, 6(6): 520 CrossRef
    97. Y. Wang, and J. Y. Lee, Angew. Chem.-Int. Edit., 2006, 45(42): 7039 CrossRef
    98. L. Huang, J.-S. Cai, Y. He, F.-S. Ke, and S.-G. Sun, Electrochem. Commun., 2009, 11(5): 950 CrossRef
    99. K. D. Kepler, J. T. Vaughey, and M. M. Thackeray, Electrochem. Solid-State Lett., 1999, 2(7): 307 CrossRef
    100. C. K. Chan, R. N. Patel, M. J. O鈥機onnell, B. A. Korgel, and Y. Cui, ACS Nano, 2010, 4(3): 1443 CrossRef
    101. C. Martin, O. Crosnier, R. Retoux, D. Belanger, D. M. Schleich, and T. Brousse, Adv. Funct. Mater., 2011, 21(18): 3524 CrossRef
    102. G. Chen, Z. Y. Wang, and D. G. Xia, Chem. Mat., 2008, 20(22): 6951 CrossRef
    103. Z. H. Wen, Q. Wang, Q. Zhang, and J. H. Li, Adv. Funct. Mater., 2007, 17(15): 2772 CrossRef
    104. L. Noerochim, J. Z. Wang, S. L. Chou, H. J. Li, and H. K. Liu, Electrochim. Acta, 2010, 56(1): 314 CrossRef
    105. H. X. Zhang, C. Feng, Y. C. Zhai, K. L. Jiang, Q. Q. Li, and S. S. Fan, Adv. Mater., 2009, 21(22): 2299 CrossRef
    106. J. Xie and V. K. Varadan, Mater. Chem. Phys., 2005, 91(2鈥?): 274 CrossRef
    107. G. M. An, N. Na, X. R. Zhang, Z. J. Miao, S. D. Miao, K. L. Ding, and Z. M. Liu, Nanotechnology, 2007, 18(43)
    108. Y. B. Fu, R. B. Ma, Y. Shu, Z. Cao, and X. H. Ma, Mater. Lett., 2009, 63(22): 1946 CrossRef
    109. G. D. Du, C. Zhong, P. Zhang, Z. P. Guo, Z. X. Chen, and H. K. Liu, Electrochim. Acta, 2010, 55(7): 2582 CrossRef
    110. C. H. Xu, J. Sun, and L. Gao, J. Phys. Chem. C, 2009, 113(47): 20509 CrossRef
    111. Z. Y. Wang, G. Chen, and D. G. Xia, J. Power Sources, 2008, 184(2): 432 CrossRef
    112. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, Nature, 2000, 407(6803): 496 CrossRef
    113. J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, Adv. Mater., 2010, 22(35): E170 CrossRef
    114. C. M. Ban, Z. C. Wu, D. T. Gillaspie, L. Chen, Y. F. Yan, J. L. Blackburn, and A. C. Dillon, Adv. Mater., 2010, 22(20): E145 CrossRef
    115. A. L. M. Reddy, M. M. Shaijumon, S. R. Gowda, and P. M. Ajayan, Nano Lett., 2009, 9(3): 1002 CrossRef
    116. F. Teng, S. Santhanagopalan, and D. D. Meng, Solid State Sci., 2010, 12(9): 1677 CrossRef
    117. Z. Wang, D. Luan, S. Madhavi, Y. Hu, and X. W. Lou, Energy Environ. Sci., 2012, 5(1): 5252 CrossRef
    118. Y. He, L. Huang, J. S. Cai, X. M. Zheng, and S. G. Sun, Electrochim. Acta, 2010, 55(3): 1140 CrossRef
    119. H. Xia, M. O. Lai, and L. Lu, J. Mater. Chem., 2010, 20(33): 6896 CrossRef
    120. G. X. Wang, X. P. Shen, J. N. Yao, D. Wexler, and J. Ahn, Electrochem. Commun., 2009, 11(3): 546 CrossRef
    121. A. R. Armstrong, G. Armstrong, J. Canales, R. Garcia, and P. G. Bruce, Adv. Mater., 2005, 17(7): 862 CrossRef
    122. P. Liu, S. H. Lee, C. e. Tracy, Y. Yan, and J. a. Turner, Adv. Mater., 2002, 14(1): 27 CrossRef
    123. C. M. Julien, Materials Science and Engineering: R: Reports, 2003, 40(2): 47 CrossRef
    124. Y. S. Hu, L. Kienle, Y. G. Guo, and J. Maier, Adv. Mater., 2006, 18(11): 1421 CrossRef
    125. Z. X. Yang, G. D. Du, Z. P. Guo, X. B. Yu, Z. X. Chen, T. L. Guo, and H. K. Liu, J. Mater. Chem., 2011, 21(24): 8591 CrossRef
    126. L. Shen, C. Yuan, H. Luo, X. Zhang, K. Xu, and F. Zhang, J. Mater. Chem., 2011, 21(3): 761 CrossRef
    127. J. J. Huang and Z. Y. Jiang, Electrochim. Acta, 2008, 53(26): 7756 CrossRef
    128. F. F. Cao, Y. G. Guo, S. F. Zheng, X. L. Wu, L. Y. Jiang, R. R. Bi, L. J. Wan, and J. Maier, Chem. Mat., 2010, 22(5): 1908 CrossRef
    129. D. H. Lee, D. W. Kim, and J. G. Park, Cryst. Growth Des., 2008, 8(12): 4506 CrossRef
    130. J. S. Sakamoto and B. Dunn, J. Electrochem. Soc., 2002, 149(1): A26 CrossRef
    131. X. Jia, Z. Chen, A. Suwarnasarn, L. Rice, X. Wang, H. Sohn, Q. Zhang, B. M. Wu, F. Wei, and Y. Lu, Energy Environ. Sci., 2012, 5(5): 6845 CrossRef
    132. X. M. Liu, Z. D. Huang, S. Oh, P. C. Ma, P. C. H. Chan, G. K. Vedam, K. Kang, and J. K. Kim, J. Power Sources, 2010, 195(13): 4290 CrossRef
    133. J. Xu, G. Chen, and X. Li, Mater. Chem. Phys., 2009, 118(1): 9 CrossRef
    134. Y. Zhou, J. Wang, Y. Hu, R. O鈥橦ayre, and Z. Shao, Chemical Communications, 2010, 46(38): 7151 CrossRef
    135. C. Ban, Z. Li, Z. Wu, M. J. Kirkham, L. Chen, Y. S. Jung, E. A. Payzant, Y. Yan, M. S. Whittingham, and A. C. Dillon, Adv. Energy Mater., 2011, 1(1): 58 CrossRef
    136. J. J. Chen and M. S. Whittingham, Electrochem. Commun., 2006, 8(5): 855 CrossRef
    137. L. Wang, Y. D. Huang, R. R. Jiang, and D. Z. Jia, J. Electrochem. Soc., 2007, 154(11): A1015 CrossRef
    138. Y. Q. Qiao, J. P. Tu, Y. J. Mai, L. J. Cheng, X. L. Wang, and C. D. Gu, J. Alloy. Compd., 2011, 509(25): 7181 CrossRef
    139. K. Evanoff, J. Khan, A. A. Balandin, A. Magasinski, W. J. Ready, T. F. Fuller, and G. Yushin, Adv. Mater., 2012, 24(4): 533 CrossRef
    140. X. Chen, H. Zhu, Y.-C. Chen, Y. Shang, A. Cao, L. Hu, and G. W. Rubloff, ACS Nano, 2012, 6(9): 7948 CrossRef
    141. D. R. Rolison, J. W. Long, J. C. Lytle, A. E. Fischer, C. P. Rhodes, T. M. McEvoy, M. E. Bourg, and A. M. Lubers, Chem. Soc. Rev., 2008, 38(1): 226 CrossRef
    142. I. S. Hwang, J. C. Kim, S. D. Seo, S. Lee, J. H. Lee, and D. W. Kim, Chem. Commun., 2012, 48(56): 7061 CrossRef
    143. W. Wang and P. N. Kumta, ACS Nano, 2010, 4(4): 2233 CrossRef
    144. L. F. Cui, L. B. Hu, J. W. Choi, and Y. Cui, ACS Nano, 2010, 4(7): 3671 CrossRef
    145. Y. Wu, Y. Wei, J. P. Wang, K. L. Jiang, and S. S. Fan, Nano Lett., 2013, 13(2): 818 CrossRef
    146. B. A. Johnson and R. E. White, J. Power Sources, 1998, 70(1): 48 CrossRef
    147. P. Arora, R. E. White, and M. Doyle, J. Electrochem. Soc., 1998, 145(10): 3647 CrossRef
    148. J. W. Braithwaite, A. Gonzales, G. Nagasubramanian, S. J. Lucero, D. E. Peebles, J. A. Ohlhausen, and W. R. Cieslak, J. Electrochem. Soc., 1999, 146(2): 448 CrossRef
    149. A. Kiebele and G. Gruner, Appl. Phys. Lett., 2007, 91(14)
    150. Y. X. Zhou, L. B. Hu, and G. Gruner, Appl. Phys. Lett., 2006, 88(12)
    151. L. B. Hu, J. W. Choi, Y. Yang, S. Jeong, F. La Mantia, L. F. Cui, and Y. Cui, Proc. Natl. Acad. Sci. USA, 2009, 106(51): 21490 CrossRef
    152. N. Singh, C. Galande, A. Miranda, A. Mathkar, W. Gao, A. L. M. Reddy, A. Vlad, and P. M. Ajayan, Sci. Rep., 2012, 2
    153. L. B. Hu, H. Wu, F. La Mantia, Y. A. Yang, and Y. Cui, ACS Nano, 2010, 4(10): 5843 CrossRef
    154. B. J. Landi, M. J. Ganter, C. D. Cress, R. A. DiLeo, and R. P. Raffaelle, Energy Environ. Sci., 2009, 2(6): 638 CrossRef
    155. K. Wang, S. Luo, Y. Wu, X. F. He, F. Zhao, J. P. Wang, K. L. Jiang, and S. S. Fan, Adv. Funct. Mater., 2013, 23(7): 846 CrossRef
  • 作者单位:Yang Wu (1)
    Jiaping Wang (1)
    Kaili Jiang (1)
    Shoushan Fan (1)

    1. Department of Physics and Tsinghua-Foxconn Nanotechnology Research Center, Tsinghua University, Beijing, 100084, China
  • ISSN:2095-0470
文摘
The development of lithium ion batteries (LIBs) relies on the improvement in the performance of electrode materials with higher capacity, higher rate capability, and longer cycle life. In this review article, the recent advances in Carbon nanotube (CNT) anodes, CNT-based composite electrodes, and CNT current collectors for high performance LIBs are concerned. CNT has received considerable attentions as a candidate material for the LIB applications. In addition to a possible choice for anode, CNT has been recognized as a solution in improving the performance of the state-of-the-art electrode materials. The CNT-based composite electrodes can be fabricated by mechanical or chemical approaches. Owing to the large aspect ratio and the high electrical conductivity, CNTs at very low loading can lead to an efficient conductive network. The excellent mechanical strength suggests the great potential in forming a structure scaffold to accommodate nano-sized electrode materials. Accordingly, the incorporation of CNTs will enhance the conductivity of the composite electrodes, mitigate the agglomeration problem, decrease the dependence on inactive binders, and improve the electrochemical properties of both anode and cathode materials remarkably. Freestanding CNT network can be used as lightweight current collectors to increase the overall energy density of LIBs. Finally, research perspectives for exploiting CNTs in high-performance LIBs are discussed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700