Analysis of electrocorticogram in epilepsy patients in terms of criticality
详细信息    查看全文
  • 作者:Jiaqing Yan ; Yinghua Wang ; Gaoxiang Ouyang ; Tao Yu ; Yongjie Li…
  • 关键词:Epilepsy ; Electrocorticogram ; Power law ; Criticality ; Hurst exponent
  • 刊名:Nonlinear Dynamics
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:83
  • 期:4
  • 页码:1909-1917
  • 全文大小:7,410 KB
  • 参考文献:1.Worrell, G.A., Cranstoun, S.D., Echauz, J., Litt, B.: Evidence for self-organized criticality in human epileptic hippocampus. Neuroreport 13(16), 2017–2021 (2002)CrossRef
    2.Shepherd, G.M., Erulkar, S.D.: Centenary of the synapse: from Sherrington to the molecular biology of the synapse and beyond. Trends Neurosci. 20(9), 385–392 (1997)CrossRef
    3.Gao, J., Hu, J., Tung, W.-W.: Entropy measures for biological signal analyses. Nonlinear Dyn. 68(3), 431–444 (2012)CrossRef MathSciNet MATH
    4.Rubchinsky, L.L., Park, C., Worth, R.M.: Intermittent neural synchronization in Parkinson’s disease. Nonlinear Dyn. 68(3), 329–346 (2012)CrossRef
    5.Bannister, K., Lee, Y.S., Goncalves, L., Porreca, F., Lai, J., Dickenson, A.H.: Neuropathic plasticity in the opioid and non-opioid actions of dynorphin. A fragments and their interactions with bradykinin B2 receptors on neuronal activity in the rat spinal cord. Neuropharmacology 85, 375–383 (2014)CrossRef
    6.Kapiris, P.G., Polygiannakis, J., Li, X., Yao, X., Eftaxias, K.A.: Similarities in precursory features in seismic shocks and epileptic seizures. Europhys Lett. 69(4), 657–663 (2005)CrossRef
    7.Shew, W.L., Plenz, D.: The functional benefits of criticality in the cortex. Neurosci. 19(1), 88–100 (2013)
    8.Linkenkaer-Hansen, K., Nikouline, V.V., Palva, J.M., Ilmoniemi, R.J.: Long-range temporal correlations and scaling behavior in human brain oscillations. J. Neurosci. 21(4), 1370–1377 (2001)
    9.Garcia, S.B., Stopper, H., Kannen, V.: The contribution of neuronal-glial-endothelial-epithelial interactions to colon carcinogenesis. Cell. Mol. Life Sci. 71(17), 3191–3197 (2014)CrossRef
    10.Maxim, V., Sendur, L., Fadili, J., Suckling, J., Gould, R., Howard, R., Bullmore, E.: Fractional Gaussian noise, functional MRI and Alzheimer’s disease. Neuroimage 25(1), 141–158 (2005)CrossRef
    11.Dan, C., Lizhe, W., Shuaiting, W., Muzhou, X., von Laszewski, G., Xiaoli, L.: Enabling energy-efficient analysis of massive neural signals using GPGPU. In: 2010 IEEE/ACM International Conference on Green Computing and Communications (GreenCom) and International Conference on Cyber, Physical and Social Computing (CPSCom), pp. 147–154 (2010)
    12.Weiss, R., Bartok, O., Mezan, S., Malka, Y., Kadener, S.: Synergistic interactions between the molecular and neuronal circadian networks drive robust behavioral circadian rhythms in Drosophila melanogaster. PLoS Genet. 10(4), e1004252 (2014). doi:10.​1371/​journal.​pgen.​1004252 CrossRef
    13.Li, X., Polygiannakis, J., Kapiris, P., Peratzakis, A., Eftaxias, K., Yao, X.: Fractal spectral analysis of pre-epileptic seizures in terms of criticality. J. Neural Eng. 2(2), 11–16 (2005)CrossRef
    14.Kotani, K., Yamaguchi, I., Yoshida, L., Jimbo, Y., Ermentrout, G.B.: Population dynamics of the modified theta model: macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation. J. R. Soc. Interface 11(95), 20140058 (2014). doi:10.​1098/​rsif.​2014.​0058 CrossRef
    15.Mandelbr, Bb, Vanness, J.W.: Fractional Brownian motions fractional noises and applications. Siam Rev. 10(4), 422 (1968)CrossRef MathSciNet
    16.Heneghan, C., McDarby, G.: Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys. Rev. E. 62(5), 6103–6110 (2000)CrossRef
    17.Janjarasjitt, S., Loparo, K.A.: Scale-invariant behavior of epileptic ECoG. J. Med. Biol. Eng. 34(6), 535–541 (2014)
    18.Eftaxias, K., Minadakis, G., Potirakis, S.M., Balasis, G.: Dynamical analogy between epileptic seizures and seismogenic electromagnetic emissions by means of nonextensive statistical mechanics. Phys. A 392(3), 497–509 (2013)CrossRef
    19.Samara, C., Poirot, O., Domenech-Estevez, E., Chrast, R.: Neuronal activity in the hub of extrasynaptic Schwann cell–axon interactions. Front. Cell. Neurosci. 7, 228 (2013). doi:10.​3389/​fncel.​2013.​00228 CrossRef
    20.Milton, J.G.: Neuronal avalanches, epileptic quakes and other transient forms of neurodynamics. Eur. J. Neurosci. 36(2), 2156–2163 (2012)CrossRef MathSciNet
    21.Mitterauer, B.J.: Intuition in autistic savantism: a hypothetical model based on glial-neuronal interactions. Med. Hypotheses 81(6), 1083–1087 (2013)CrossRef
  • 作者单位:Jiaqing Yan (1)
    Yinghua Wang (2) (3)
    Gaoxiang Ouyang (2) (3)
    Tao Yu (4)
    Yongjie Li (4)
    Attila Sik (5)
    Xiaoli Li (2) (3)

    1. Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
    2. State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
    3. Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
    4. Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
    5. College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
  • 刊物类别:Engineering
  • 刊物主题:Vibration, Dynamical Systems and Control
    Mechanics
    Mechanical Engineering
    Automotive and Aerospace Engineering and Traffic
  • 出版者:Springer Netherlands
  • ISSN:1573-269X
文摘
Self-organized criticality is being considered as a potential organization of the brain. In this study, major features of critical systems were applied to investigate the power-law distributions of human electrocorticogram (ECoG) data, with the aim of determining whether the critical regime could be applied to reveal the underling change of epileptic seizure generation. Multiple brain region ECoG signal was recorded from three epilepsy patients, including inter-ictal, pre-ictal, ictal and postictal stages. The Hurst exponent (H) parameter from the power-law analysis was calculated based on the ECoG signal spectrum estimated using a harmonic wavelet transform-based power-law analysis method. The changes in H at normal, inter-ictal spike, ictal stages were discussed in the framework of criticality theory. The H parameter could describe the dynamics of seizure generation. When inter-ictal spike occurred, H became larger than 0.5, suggesting that the underlying system changed from non-persistent to persistent dynamics. However, when seizure occurred, the ECoG dynamics changed into a state that H cannot indicate. The power-law analysis with Hurst exponent can be used to describe the generation of epileptic seizure. This analytical method provides a new insight to the understanding of the generation mechanism of epileptic seizures in terms of criticality, which could be used to design a prediction and/or detection method for closed-loop control of epilepsy. Keywords Epilepsy Electrocorticogram Power law Criticality Hurst exponent

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700