Effects of Air Inlet Configuration on Forced-Ventilation Enclosure Fires on a Naval Ship
详细信息    查看全文
  • 作者:Bosi Zhang ; Jiaqing Zhang ; Xiaomin Wang ; Shouxiang Lu ; Changhai Li…
  • 关键词:Air inlet configuration ; Forced ventilation ; Closed ship cabin ; Smoke control
  • 刊名:Fire Technology
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:52
  • 期:2
  • 页码:547-562
  • 全文大小:889 KB
  • 参考文献:1.Lieberman P, Bell D (1973) Smoke and fire propagation in compartment spaces. Fire Technol 9(2):91–100. doi:10.​1007/​BF02624826 .CrossRef
    2.Takeda H (1989) Model experiments of ship fire. Symp (Int) Combust 22(1):1311–1317. doi:10.​1016/​S0082-0784(89)80142-0 .CrossRef
    3.Steward FR, Morrison L, Mehaffey J (1992) Full scale fire tests for ship accommodation quarters. Fire Technol 28(1):31–47. doi:10.​1007/​BF01858050 .CrossRef
    4.Arvidson M (2014) Large-scale water spray and water mist fire suppression system tests for the protection of Ro–Ro cargo decks on ships. Fire Technol 50(3):589–610. doi:10.​1007/​s10694-012-0312-7 .CrossRef
    5.Braun E, Lowe DL, Jones WW, Tatem P, Carey R, Bailey J (1992) Comparison of full scale fire tests and a computer fire model of several smoke ejection experiments. NASA STI/Recon Tech Rep N 93:23280.
    6.Williams FW, Forssell E, DiNenno P, Beyler C, Lain P (1994) Shipboard smoke control tests using forced counterflow air supply. NRL/MR/6180–94-7616, Naval Research Lab, Washington DC.
    7.Andersson C, Säterborn D (2002) Smoke control systems aboard—a risk anaylsis of smoke control systems in accommodation space on passenger ships. Report 5093, Lund University, Sweden.
    8.Peatross MJ, Williams FW (2002) Options for advanced smoke control onboard ships. NRL/MR/6180–02-8612, Naval Research Lab, Washington DC.
    9.Fay TS, Mack EC, Parker AJ, Darwin RL (2003) Amphibious assault ship hangar bay smoke removal tests conducted onboard the USS Saipan (LHA-2) and USS Peleliu (LHA-5). NAWCWD-TM-8390, Naval Air Warfare Center Weapons Division, California.
    10.Hiltz JA (2011) New technologies and materials for enhanced damage and fire tolerance of naval vessels. DRDC-TM-2010-306, Defence Research and Development, Canada.
    11.Havlovick BJ, Yadon JT, Farley JP, Williams FW (2002) Automated control of shipboard ventilation systems: phase 2, part A. Test results. NRL/MR/6180–02-8624, Naval Research Lab, Washington DC.
    12.Tuomisaari M (1997) Smoke ventilation in operational fire fighting. Technical Research Centre of Finland, Espoo.
    13.Williams F, Tatem P, Bailey J (1993) Methanol pan fires in an enclosed space: effect of pressure and oxygen concentration. NRL/MR/6180–93-7310, Naval Research Lab, Washington DC.
    14.Li C, Lu S, Yuan M, Zhou Y (2010) Studies on ghosting fire from pool fire in closed compartments. J Univ Sci Technol China 40(7):751–756. doi:10.​3969/​j.​issn.​0253-2778.​07.​015 .
    15.Zhang J, Lu S, Li Q, Yuen R, Chen B, Yuan M, Li C (2012) Smoke filling in closed compartments with elevated fire sources. Fire Saf J 54:14–23. doi:10.​1016/​j.​firesaf.​2012.​08.​003 .CrossRef
    16.Zhang J, Lu S, Li Q, Li C, Yuen R, Yuan M, Li C (2013) Impacts of elevation on pool fire behavior in a closed compartment: a study based upon a distinct stratification phenomenon. J Fire Sci 31(2):178–193. doi: 10.​1177/​0734904112460203​ .CrossRef
    17.Chow WK, Chan W (1993) Experimental studies on forced-ventilated fires. Fire Sci Technol 13(1/2):1_71–1_87. doi:10.​3210/​fst.​13.​1_​71 .CrossRef
    18.Chow WK (1993) Modelling of forced-ventilation fires. Math Comput Model 18(5): 63–66. doi: 10.​1016/​0895-7177(93)90133-J .CrossRef
    19.Chow W (1995) Use of zone models on simulating compartmental fires with forced ventilation. Fire Mater 19(3):101–108. doi:10.​1002/​fam.​810190302 .CrossRef
    20.Chow WK, Tsui S (1998) Temperature distribution induced by fires in a small chamber with forced ventilation. J Fire Sci 16(2):125–145. doi:10.​1177/​0734904198016002​04 .CrossRef
    21.Prétrel H, Such J (2005) Effect of ventilation procedures on the behaviour of a fire compartment scenario. Nucl Eng Des 235(20):2155–2169. doi:10.​1016/​j.​nucengdes.​2005.​03.​003 .CrossRef
    22.Bonte F, Noterman N, Merci B (2013) Computer simulations to study interaction between burning rates and pressure variations in confined enclosure fires. Fire Saf J 62:125–143. doi:10.​1016/​j.​firesaf.​2013.​01.​030 .CrossRef
    23.Hayashi Y, Hasemi Y, Ptchelintsev A (1988) Smoke layer formation by fires in forced-ventilation enclosure. Fire Saf Sci 6:805–816. doi:10.​3801/​IAFSS.​FSS.​6-805 .CrossRef
    24.Alvares N, Foote K, Pagni P (1984) Forced ventilated enclosure fires. Combust Sci Technol 39(1–6):55–81. doi:10.​1080/​0010220840892378​3 .CrossRef
    25.Peatross M, Beyler C (1997) Ventilation effects on compartment fire characterization. Fire Saf Sci 5:403–414. doi:10.​3801/​IAFSS.​FSS.​5-403 .CrossRef
    26.Backovsky J, Foote K, Alvares NJ (1988) Temperature profiles in forced-ventilation enclosure fires. Fire Saf Sci 2:315–324. doi:10.​3801/​IAFSS.​FSS.​2-315 .CrossRef
    27.Pretrel H, Le Saux W, Audouin L (2012) Pressure variations induced by a pool fire in a well-confined and force-ventilated compartment. Fire Saf J 52:11–24. doi: 10.​1016/​j.​firesaf.​2012.​04.​005 .CrossRef
    28.Le Saux W, Pretrel H, Lucchesi C, Guillou P (2008) Experimental study of the fire mass loss rate in confined and mechanically ventilated multi-room scenarios. Fire Saf Sci 9: 943–954. doi:10.​3801/​IAFSS.​FSS.​9-943 .CrossRef
    29.Mizuno K, Tanaka S, Hasemi Y (1993) Study of force-ventilated fires in closed space. Fire Sci Technol 13(Suppl):S_63–S_82. doi:10.​3210/​fst.​13.​S_​63 .CrossRef
    30.Williams FW, Nguyen X, Farley JP, Scheffey JL, Wong JT (2002) EX-USS Shadwell (LSD-15)—the Navy’s full-scale damage control RDT&E test facility. NRL/MR/6180–01-8576, Naval Research Lab, Washington DC.
    31.Suard S, Nasr A, Melis S, Garo J, El-Rabii H, Gay L, Rigollet L, Audouin L (2011) Analytical approach for predicting effects of vitiated air on the mass loss rate of large pool fire in confined compartments. Fire Saf Sci 10:1513–1524. doi:10.​3801/​IAFSS.​FSS.​10-1513 .CrossRef
    32.International Maritime Organization (IMO) (2009) International convention for the safety of life at sea. International Maritime Organization, London.
    33.Gao Y, Liu Q, Chow W, Wu M (2014) Analytical and experimental study on multiple fire sources in a kitchen. Fire Saf J 63:101–112. doi:10.​1016/​j.​firesaf.​2013.​12.​001 .CrossRef
    34.Yuan M, Lu S, Zhou Y, Zhang J (2014) A simplified mathematical model for predicting the vertical temperature profiles in enclosure fires without vertical opening. Fire Technol 50(4):929–943. doi:10.​1007/​s10694-012-0315-4 .CrossRef
    35.Zhang J, Lu S, Li C, Yuen RKK, Li Q (2015) Fire-induced temperature correlations in ceiling vented compartments. Fire Technol 51(2):369–379. doi:10.​1007/​s10694-014-0386-5 .
  • 作者单位:Bosi Zhang (1)
    Jiaqing Zhang (2)
    Xiaomin Wang (1) (3)
    Shouxiang Lu (1)
    Changhai Li (1)
    Ruiyu Chen (1)

    1. State Key Laboratory of Fire Science, University of Science and Technology of China, Hefei, 230027, Anhui, China
    2. State Grid Anhui Electric Power Research Institute, Hefei, 230022, Anhui, China
    3. New Star Institute of Applied Technology, Hefei, 230027, Anhui, China
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Mechanics
    Characterization and Evaluation Materials
    Physics
  • 出版者:Springer Netherlands
  • ISSN:1572-8099
文摘
The effects of air inlet configuration on pool fire behavior in a mechanically ventilated cabin were investigated. The closed cabin used was a model of a certain machinery cabin on a naval ship. Two air inlet configurations of one vent and two vents were taken into account together with five different elevations of air inlet. In one-vent cases, mass loss rate and gas temperature were lower and oxygen concentrations were higher than those of two-vent cases. With the increase of air inlet elevation, a sudden drop in average mass loss rate and peak temperature were found in the two-vent cases at the air inlet elevation of 1.56 m. In one-vent cases, a similar drop in average mass loss rate was found at the air inlet elevation of 0.88 m, while the peak temperature was almost unaffected by inlet elevation. According to temperature profiles and the characteristic parameter of the smoke layer stability, the formation of the smoke layer was destroyed by increasing the air inlet elevation or reducing the air inlets, and furthermore a more uniform distribution could be found. For the current cabin, the one-vent case with a lower air inlet elevation was recommended for smoke control, and the inlet should be set away from the essential equipment and the entrances of the cabin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700