Automatic determination of the arterial input function in dynamic susceptibility contrast MRI: comparison of different reproducible clustering algorithms
详细信息    查看全文
  • 作者:Jiandong Yin ; Jiawen Yang ; Qiyong Guo
  • 关键词:Affine propagation ; Arterial input function ; Cerebral perfusion ; Normalized cut
  • 刊名:Neuroradiology
  • 出版年:2015
  • 出版时间:May 2015
  • 年:2015
  • 卷:57
  • 期:5
  • 页码:535-543
  • 全文大小:1,351 KB
  • 参考文献:1.Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453:869鈥?78View Article PubMed
    2.Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55:524鈥?31View Article PubMed
    3.Furtner J, Bender B, Braun C, Schittenhelm J, Skardelly M, Ernemann U, Bisdas S (2014) Prognostic value of blood flow measurements using arterial spin labeling in gliomas. PLoS One 9:e99616View Article PubMed Central PubMed
    4.Rau MK, Braun SM, Schittenhelm J, Paulsen F, Bender B, Ernemann U, Bisdas S (2014) Prognostic value of blood flow estimated by arterial spin labeling and dynamic susceptibility contrast-enhanced MR imaging in high-grade gliomas. J Neurooncol 120:557鈥?66View Article PubMed
    5.Roldan-Valadez E, Gonzalez-Gutierrez O, Martinez-Lopez M (2012) Diagnostic performance of PWI/DWI MRI parameters in discriminating hyperacute versus acute ischaemic stroke: finding the best thresholds. Clin Radiol 67:250鈥?57View Article PubMed
    6.Calamante F (2013) Arterial input function in perfusion MRI: a comprehensive review. Prog Nucl Magn Reson Spectrosc 74:1鈥?2View Article PubMed
    7.Murase K, Kikuchi K, Miki H, Shimizu T, Ikezoe J (2001) Determination of arterial input function using fuzzy clustering for quantification of cerebral blood flow with dynamic susceptibility contrast-enhanced MR imaging. J Magn Reson Imaging 13:797鈥?06View Article PubMed
    8.Mlynash M, Eyngorn I, Bammer R, Moseley M, Tong DC (2005) Automated method for generating the arterial input function on perfusion-weighted MR imaging: validation in patients with stroke. AJNR Am J Neuroradiol 26:1479鈥?486PubMed
    9.Peruzzo D, Bertoldo A, Zanderigo F, Cobelli C (2011) Automatic selection of arterial input function on dynamic contrast-enhanced MR images. Comput Methods Programs Biomed 104:e148鈥揺157View Article PubMed
    10.Shi L, Wang D, Liu W, Fang K, Wang YX, Huang W, King AD, Heng PA, Ahuja AT (2014) Automatic detection of arterial input function in dynamic contrast enhanced MRI based on affinity propagation clustering. J Magn Reson Imaging 39:1327鈥?337View Article PubMed
    11.Frey BJ, Dueck D (2007) Clustering by passing messages between data points. Science 315:972鈥?76View Article PubMed
    12.Shi J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22:888鈥?05View Article
    13.Yin J, Sun H, Yang J, Guo Q (2014) Comparison of K-Means and fuzzy c-Means algorithm performance for automated determination of the arterial input function. PLoS One 9:e85884View Article PubMed Central PubMed
    14.Yin J, Sun H, Yang J, Guo Q (2014) Automated detection of the arterial input function using normalized cut clustering to determine cerebral perfusion by dynamic susceptibility contrast-magnetic resonance imaging. J Magn Reson Imaging
    15.脴stergaard L (2004) Cerebral perfusion imaging by bolus tracking. Top Magn Reson Imaging 15:3鈥?View Article PubMed
    16.Murase K, Shinohara M, Yamazaki Y (2001) Accuracy of deconvolution analysis based on singular value decomposition for quantification of cerebral blood flow using dynamic susceptibility contrast-enhanced magnetic resonance imaging. Phys Med Biol 46:3147鈥?159View Article PubMed
    17.Wu O, 脴stergaard L, Koroshetz WJ, Schwamm LH, O鈥橠onnell J, Schaefer PW, Rosen BR, Weisskoff RM, Sorensen AG (2003) Effects of tracer arrival time on flow estimates in MR perfusion-weighted imaging. Magn Reson Med 50:856鈥?64View Article PubMed
    18.Calamante F, Gadian DG, Connelly A (2003) Quantification of bolus-tracking MRI: improved characterization of the tissue residue function using Tikhonov regularization. Magn Reson Med 50:1237鈥?247View Article PubMed
    19.Parker GJ, Roberts C, Macdonald A, Buonaccorsi GA, Cheung S, Buckley DL, Jackson A, Watson Y, Davies K, Jayson GC (2006) Experimentally-derived functional form for a population-averaged high-temporal-resolution arterial input function for dynamic contrast-enhanced MRI. Magn Reson Med 56:993鈥?000View Article PubMed
    20.Guzm谩n-de-Villoria JA, Fern谩ndez-Garc铆a P, Mateos-P茅rez JM, Desco M (2012) Studying cerebral perfusion using magnetic susceptibility techniques: technique and applications. Radiologia 54:208鈥?20View Article PubMed
    21.Smith AM, Grandin CB, Duprez T, Mataigne F, Cosnard G (2000) Whole brain quantitative CBF, CBV, and MTT measurements using MRI bolus tracking: implementation and application to data acquired from hyperacute stroke patients. J Magn Reson Imaging 2:400鈥?10View Article
    22.Freire L, Roche A, Mangin JF (2002) What is the best similarity measure for motion correction in fMRI time series? IEEE Trans Med Imaging 21:470鈥?84View Article PubMed
    23.Freire L, Mangin JF (2001) Motion correction algorithms may create spurious brain activations in the absence of subject motion. Neuroimage 14:709鈥?22View Article PubMed
    24.Conturo TE, Akbudak E, Kotys MS, Chen ML, Chun SJ, Hsu RM, Sweeney CC, Markham J (2005) Arterial input functions for dynamic susceptibility contrast MRI: requirements and signal options. J Magn Reson Imaging 22:697鈥?03View Article PubMed
    25.Bleeker EJ, van Osch MJ, Connelly A, van Buchem MA, Webb AG, Calamante F (2011) New criterion to aid manual and automatic selection of the arterial input function in dynamic susceptibility contrast MRI. Magn Reson Med 65:448鈥?56View Article PubMed
    26.Carroll TJ, Rowley HA, Haughton VM (2003) Automatic calculation of the arterial input function for cerebral perfusion imaging with MR imaging. Radiology 227:593鈥?00View Article PubMed
    27.Enmi J, Kudomi N, Hayashi T, Yamamoto A, Iguchi S, Moriguchi T, Hori Y, Koshino K, Zeniya T, Jon Shah N, Yamada N, Iida H (2012) Quantitative assessment of regional cerebral blood flow by dynamic susceptibility contrast-enhanced MRI, without the need for arterial blood signals. Phys Med Biol 7:7873鈥?892View Article
    28.Bleeker EJ, van Buchem MA, van Osch MJ (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29:840鈥?52View Article PubMed
    29.Knutsson L, van Westen D, Petersen ET, Bloch KM, Holt氓s S, St氓hlberg F, Wirestam R (2010) Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Imaging 28:1鈥?View Article PubMed
    30.Gr眉ner R, Taxt T (2006) Iterative blind deconvolution in magnetic resonance brain perfusion imaging. Magn Reson Med 55:805鈥?15View Article PubMed
    31.Willats L, Christensen S, Ma HK, Donnan GA, Connelly A, Calamante F (2011) Validating a local arterial input function method for improved perfusion quantification in stroke. J Cereb Blood Flow Metab 31:2189鈥?198View Article PubMed Central PubMed
    32.Calamante F, M酶rup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52:789鈥?97View Article PubMed
    33.Nordli H, Taxt T, Moen G, Gr眉ner R (2010) Voxel-specific brain arterial input functions from dynamic susceptibility contrast MRI and blind deconvolution in a group of healthy males. Acta Radiol 51:334鈥?43View Article PubMed
    34.Wu O, 脴stergaard L, Weisskoff RM, Benner T, Rosen BR, Sorensen AG (2003) Tracer arrival timing-insensitive technique for estimating flow in MR perfusion-weighted imaging using singular value decomposition with a block-circulant deconvolution matrix. Magn Reson Med 50:164鈥?74View Article PubMed
    35.Zanderigo F, Bertoldo A, Pillonetto G, Cobelli Ast C (2009) Nonlinear stochastic regularization to characterize tissue residue function in bolus-tracking MRI: assessment and comparison with SVD, block-circulant SVD, and Tikhonov. IEEE Trans Biomed Eng 56:1287鈥?297View Article PubMed
    36.Ibaraki M, Shimosegawa E, Toyoshima H, Takahashi K, Miura S, Kanno I (2005) Tracer delay correction of cerebral blood flow with dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 25:378鈥?90View Article PubMed
    37.Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68:495鈥?06View Article PubMed Central PubMed
    38.Mehndiratta A, MacIntosh BJ, Crane DE, Payne SJ, Chappell MA (2013) A control point interpolation method for the non-parametric quantification of cerebral haemodynamics from dynamic susceptibility contrast MRI. Neuroimage 64:560鈥?70View Article PubMed
  • 作者单位:Jiandong Yin (1)
    Jiawen Yang (1)
    Qiyong Guo (1)

    1. Department of Radiology, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang, 110004, People鈥檚 Republic of China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neuroradiology
    Imaging and Radiology
    Neurology
    Neurosurgery
    Neurosciences
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1432-1920
文摘
Introduction Arterial input function (AIF) plays an important role in the quantification of cerebral hemodynamics. The purpose of this study was to select the best reproducible clustering method for AIF detection by comparing three algorithms reported previously in terms of detection accuracy and computational complexity. Methods First, three reproducible clustering methods, normalized cut (Ncut), hierarchy (HIER), and fast affine propagation (FastAP), were applied independently to simulated data which contained the true AIF. Next, a clinical verification was performed where 42 subjects participated in dynamic susceptibility contrast MRI (DSC-MRI) scanning. The manual AIF and AIFs based on the different algorithms were obtained. The performance of each algorithm was evaluated based on shape parameters of the estimated AIFs and the true or manual AIF. Moreover, the execution time of each algorithm was recorded to determine the algorithm that operated more rapidly in clinical practice. Results In terms of the detection accuracy, Ncut and HIER method produced similar AIF detection results, which were closer to the expected AIF and more accurate than those obtained using FastAP method; in terms of the computational efficiency, the Ncut method required the shortest execution time. Conclusion Ncut clustering appears promising because it facilitates the automatic and robust determination of AIF with high accuracy and efficiency.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700