Climate warming and increasing atmospheric CO2 have contributed to increased intrinsic water-use efficiency on the northeastern Tibetan Plateau since 1850
详细信息    查看全文
  • 作者:Guobao Xu (1) (2)
    Xiaohong Liu (1)
    Dahe Qin (1)
    Tuo Chen (1)
    Wenling An (1) (2)
    Wenzhi Wang (1) (2)
    Guoju Wu (1) (2)
    Xiaomin Zeng (1) (2)
    Jiawen Ren (1)
  • 关键词:Sabina tibetica ; Intrinsic water ; use efficiency ; Climate warming ; Tree ; ring δ13C ; Ecophysiological parameters
  • 刊名:Trees - Structure and Function
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:27
  • 期:2
  • 页码:465-475
  • 全文大小:944KB
  • 参考文献:1. Andreu L, Planells O, Gutierrez E, Helle G, Schleser GH (2002) Increasing atmosphereric CO2 concentration is enhancing water-use efficiency in five Spanish forests. PhD dissertation, Universitat de Barcelona, Barcelona
    2. Andreu-Hayles L, Planells O, GutiéRrez E, Muntan E, Helle G, Anchukaitis KJ, Schleser GH (2011) Long tree-ring chronologies reveal 20th century increases in water-use efficiency but no enhancement of tree growth at five Iberian pine forests. Global Change Biol 17(6):2095-112. doi:10.1111/j.1365-2486.2010.02373.x CrossRef
    3. Coplen TB (1995) Discontinuance of SMOW and PDB. Nature 375:285 CrossRef
    4. Duquesnay A, Bréda N, Stievenard M, Dupouey JL (1998) Changes of tree-ring δ13C and water-use efficiency of beech ( / Fagus sylvatica L.) in north-eastern France during the past century. Plant Cell Environ 21(6):565-72 CrossRef
    5. Ehleringer JR, Cerling TE (1995) Atmospheric CO2 and the ratio of intercellular to ambient CO2 concentrations in plants. Tree Physiol 15:105-11 CrossRef
    6. Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Austral J Plant Physiol 9:121-37 CrossRef
    7. Farquhar GD, Ehleringer JR, Hubick KT (1989) Carbon isotope discrimination and photosynthesis. Ann Rev Plant Physiol Mol Biol 40(1):503-37. doi:10.1146/annurev.pp 40.060189.002443 CrossRef
    8. Feng XH (1998) Long-term / c i/ / c a response of trees in western North America to atmospheric CO2 concentration derived from carbon isotope chronologies. Oecologia 117:19-5 CrossRef
    9. Feng XH (1999) Trends in intrinsic water-use efficiency of natural trees for the past 100-00?years: a response to atmospheric CO2 concentration. Geochim Cosmochim Acta 63(13-4):1891-903. doi:10.1016/S0016-7037(99)00088-5 CrossRef
    10. Feng XH, Epstein S (1995) Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochim Cosmochim Acta 59(12):2599-608 CrossRef
    11. Green JW (1963) Wood cellulose. In: Whistler RL (ed) Methods of carbohydrate chemistry III. Academic Press, London, pp 9-1
    12. Hietz P, Wanek W, Dunisch O (2005) Long-term trends in cellulose δ13C and water-use efficiency of tropical / Cedrela and / Swietenia from Brazil. Tree Physiol 25(6):745-52. doi:10.1093/treephys/25.6.745 CrossRef
    13. Jin LY, Qin NS, Gou XH, Chen FH, Li JB (2005) Series of spring maximum temperature in southern Qinghai Plateau and analysis of its variations during the last 450?years (in Chinese). Quat Sci 25:193-01
    14. Jones P, Humle M (1996) Calculating regional climatic time series for temperature and precipitation: methods and illustrations. Int J Climatol 16:361-77 CrossRef
    15. Leavitt SW (2008) Tree-ring isotopic pooling without regard to mass: no difference from averaging δ13C values of each tree. Chem Geol 252:52-5 CrossRef
    16. Leavitt SW, Idso SB, Kimball BA, Burns JM, Sinha A, Stott L (2003) The effect of long-term atmospheric CO2 enrichment on the intrinsic water-use efficiency of sour orange trees. Chemosphere 50(2):217-22. doi:10.1016/S0045-6535(02)00378-8 CrossRef
    17. Leavitt SW, Treydte K, Yu L (2010) Environment in time and space: opportunities from Tree-ring isotope networks. In: West JB, Bowen GJ, Dawson TE, Tu KP (eds) Isoscapes: understanding movement, pattern, and process on earth through isotope mapping. Springer, Dordrecht, pp 113-35
    18. Liu XH, Shao XM, Wang LL, Liang EY, Qin DH, Ren JW (2008) Response and dendroclimatic implications of δ13C in tree rings to increasing drought on the northeastern Tibetan Plateau. J Geophys Res 113:G03015. doi:10.1029/2007jg000610 CrossRef
    19. Liu XH, Liu Y, Xu GB, Cai QF, An WL, Wang WZ (2010) Pretreatment of the tree-ring samples for stable isotope analysis (in Chinese). J Glaciol Geocryol 32(06):1242-250
    20. Liu XH, An WL, Liang EY, Wang WZ, Shao XM, Huang L, Qin DH (2011) Spatiotemporal variability in tree ring’s δ13C of / Picea crassifolia in the Qilian Mountains: climatic significance and responses to rising CO2. Sci Cold Arid Regions 3:93-02 CrossRef
    21. Marshall JD, Monserud RA (1996) Homeostatic gas-exchange parameters inferred from 13C/12C in tree rings of conifers. Oecologia 105(1):13-1 CrossRef
    22. McCarroll D, Loader NJ (2004) Stable isotopes in tree rings. Quat Sci Rev 23(7-):771-01 CrossRef
    23. McCarroll D, Gagen MH, Loader NJ, Robertson I, Anchukaitis KJ, Los S, Young GHF, Jalkanen R, Kirchhefer A, Waterhouse JS (2009) Correction of tree ring stable carbon isotope chronologies for changes in the carbon dioxide content of the atmosphere. Geochim Cosmochim Acta 73(6):1539-547. doi:10.1016/j.gca.2008.11.041 CrossRef
    24. Mitchell TD, Jones PD (2005) An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int J Climatol 25:693-12. doi:10.1002/joc.1181 CrossRef
    25. Murakami T (1987) Orography and monsoons. In: Fien JS, Stephens PL (eds) Monsoons. Wiley, New York, pp 331-64
    26. Qin NS, Shao XM, Jin LY, Wang QC, Zhu XD, Wang Z, Li JB (2003) Climate change over southern Qinghai Plateau in the past 500?years recorded in / Sabina tibetica tree rings. Chinese Sci Bull 48(22):2483-487. doi:10.1360/03wd0088
    27. Robertson I, Waterhouse JS, Barker AC, Carter AHC, Switsur VR (2001) Oxygen isotope ratios of oak in east England: implications for reconstructing the isotopic composition of precipitation. Earth Planet Sci Lett 191:21-1. doi:S0012-821X(01)00399-5 CrossRef
    28. Saurer M, Siegwolf RTW, Schweingruber FH (2004) Carbon isotope discrimination indicates improving water-use efficiency of trees in northern Eurasia over the last 100?years. Global Change Biol 10:2109-120. doi:10.1111/j.1365-2486.2004.00869.x CrossRef
    29. Schweingruber FH (ed) (1988) Tree rings: basics and applications of dendrochronology. Academic Press, Dordrecht
    30. Silva LCR, Anand M, Leithead MD (2010) Recent widespread tree growth decline despite increasing atmospheric CO2. Plosone 5(7):e11543. doi:10.1371/journal.pone.0011543
    31. Stokes MA, Smiley TL (eds) (1968) An introduction to tree-ring dating. The University of Chicago Press, Chicago
    32. Sun HL, Zheng D (eds) (1998) Formation, evolution and development of Tibetan Plateau (in Chinese). Guangdong Science and Technology Press, Guangzhou
    33. Tang MC, Sheng ZB, Chen YY (1979) On climatic characteristics of the Xizang Plateau monsoon (in Chinese). Acta Geograph Sinica 34(1):33-2
    34. Tang K, Feng X, Funkhouser G (1999) The δ13C of tree rings in full-bark and strip-bark bristlecone pine trees in the White Mountains of California. Global Change Biol 5(1):33-0. doi:10.1046/j.1365-2486.1998.00204.x CrossRef
    35. Wang JXL, Gaffen DJ (2001) Late-twentieth-century climatology and trends of surface humidity and temperature in China. J Clim 141:2833-845 CrossRef
    36. Wang SW, Ye JL, Gong DY, Zhu JH, Yao TD (1998) Construction of mean annual temperature series for the last one hundred years in China (in Chinese). Quart J Appl Meteorol 9(4):392-01
    37. Waterhouse JS, Switsur VR, Barker AC, Carter AHC, Hemming DL, Loader NJ, Robertson I (2004) Northern European trees show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quat Sci Rev 23(7-):803-10 CrossRef
    38. Williams DG, Ehleringer JR (1996) Carbon isotope discrimination in three semi-arid woodland species along a monsoon gradient. Oecologia 106:455-60 CrossRef
    39. Xu GB, Chen T, Liu XH, Jin LY, An WL, Wang WZ (2011) Summer temperature variations recorded in tree-ring δ13C values on the northeastern Tibetan Plateau. Theor Appl Climatol 105:51-3. doi:10.1007/s00704-010-0370-z CrossRef
  • 作者单位:Guobao Xu (1) (2)
    Xiaohong Liu (1)
    Dahe Qin (1)
    Tuo Chen (1)
    Wenling An (1) (2)
    Wenzhi Wang (1) (2)
    Guoju Wu (1) (2)
    Xiaomin Zeng (1) (2)
    Jiawen Ren (1)

    1. State Key Laboratory of Cryospheric Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Donggang West Road No. 320, Lanzhou, 730000, China
    2. University of Chinese Academy of Sciences, Beijing, 100049, China
  • ISSN:1432-2285
文摘
We investigated the physiological responses of Tibetan juniper (Sabina tibetica) to changes in the atmospheric CO2 concentration (C a) and climate on the northeastern Tibetan Plateau based on annual tree-ring δ13C values since 1850. Intrinsic water-use efficiency (iWUE) increased, and the internal to ambient CO2 ratio (C i /C a) showed no significant trend from 1895 to 1974 in the study region, indicating an active response to changing C a. The long-term trends in iWUE in the naturally occurring trees were mainly caused by the anthropogenic increase in C a. However, from 1975 to 2002, iWUE increased rapidly at the study site (by 12.4?% compared with the overall mean from 1850 to 2002), which is greater than the expected increase due only to an active response to C a. Our analysis showed that decreased water availability caused by greater evaporation due to decreased precipitation and a warming growth environment from 1975 to 2002 may have reduced stomatal conductance, leading to a higher iWUE. The warming climate and increased C a accounted for 83.6?% of the variance in iWUE of Tibetan juniper on the northeastern Tibetan Plateau from 1975 to 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700