A new paleoenvironmental index for anoxic events—Mo isotopes in black shales from Upper Yangtze marine sediments
详细信息    查看全文
  • 作者:Lian Zhou (1)
    Jie Su (1)
    JunHua Huang (1)
    JiaXing Yan (2)
    XiNong Xie (3)
    Shan Gao (1)
    MengNing Dai (4)
    Tonger (5)
  • 关键词:molybdenum isotopes ; proxy for paleo ; redox conditions ; black shale ; Upper Yangtze
  • 刊名:Science China Earth Sciences
  • 出版年:2011
  • 出版时间:July 2011
  • 年:2011
  • 卷:54
  • 期:7
  • 页码:1024-1033
  • 全文大小:670KB
  • 参考文献:1. Kaiho K. Global changes of Paleogene aerobic/anaerobic benthic foraminifera and deep-sea circulation. Palaeogeogr Palaeoclimatol Palaeoecol, 1992, 83: 65-5 CrossRef
    2. Isozaki Y. Permian-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235-38 CrossRef
    3. Kaiho K, Kajiwara Y, Tazaki K, et al. Oceanic primary productivity and dissolved oxygen levels at the Cretaceous/Tertiary boundary: Their decrease, subsequent warming and recovery. Palaeoceanography, 1999, 14: 511-24 CrossRef
    4. Canfield D E. A new model for Proterozoic ocean chemistry. Nature, 1998, 396: 450-53 CrossRef
    5. Bratton J F, Berry W B N, Morrow J R. Anoxia pre-dates Frasnian-Famennian boundary mass extinction horizon in the Great Basin, USA. Palaeogeogr Palaeoclimatol Palaeoecol, 1999, 154: 275-92 CrossRef
    6. Xie S C, Pancost R D, Yin H F, et al. Two episodes of microbial change coupled with Permo/Triassic faunal mass extinction. Nature, 2005, 434: 494-97 CrossRef
    7. Turgeon S C, Brumsack H J. Anoxic vs dysoxic events reflected in sediment geochemistry during the Cenomanian-Turonian Boundary Event (Cretaceous) in the Umbria-Marche Basin of central Italy. Chem Geol, 2006, 234: 321-39 CrossRef
    8. Breck W G. Redox levels in the sea. In: Goldberg E D, ed. The Sea: Ideas and Observationson Progress in the Study of the Seas, Marine Chemistry. New York: Wiley, 1974. 153-79
    9. Tyson R V, Pearson T H. Modern and ancient continental shelf anoxia: An overview. Geol Soc Spec Publ London, 1991. 58: 1-4 CrossRef
    10. Lyons T W, Werne J P, Hollander D J, et al. Contrasting sulfur geochemistry and Fe/Al and Mo/Al ratios across the last oxic-to-anoxic transition in the Cariaco Basin, Venezuela. Chem Geol, 2003. 195: 131-57 CrossRef
    11. Sageman B B, Murphy A E, Werne J P, et al. A tale of shales: The relative roles of production, decomposition, and dilution in the accumulation of organic-rich strata, Middle Upper Devonian, Appalachian Basin. Chem Geol, 2003, 195: 229-73 CrossRef
    12. Rimmer S M. Geochemical paleoredox indicators in Devonian-Mississippian black shales, Central Appalachian Basin (USA). Chem Geol, 2004, 206: 373-91 CrossRef
    13. Algeo T J, Maynard J B. Trace-element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chem Geol, 2004, 206: 289-18 CrossRef
    14. Algeo T J. Can marine anoxic events draw down the trace element inventory of seawater? Geology, 2004, 32: 1057-060 CrossRef
    15. Tribovillard N, Riboulleau A, Lyons T, et al. Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations. Chem Geol, 2004, 213: 385-01 CrossRef
    16. Tribovillard N, Algeo T J, Lyons T, et al. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem Geol, 2006, 232: 12-2 CrossRef
    17. Russell A D, Morford J L. The behavior of redox-sensitive metals across a laminated-massive-laminated transition in Saanich Inlet, British Columbia. Mar Geol, 2001, 174: 341-54 CrossRef
    18. Hatch J R, Leventhal J S. Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U. S. A. Chem Geol, 1992, 99: 65-2 CrossRef
    19. Jones B J, Manning A C. Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol, 1994, 111: 111-29 CrossRef
    20. Wignall P B. Black Shale. Oxford: Claredon Press, 1994. 1-27
    21. Wignall P B, Myers K J. Interpreting the benthic oxygen levels in mudrocks: A new approach. Geology, 1988, 16: 452-55 CrossRef
    22. Alberdi Genolet M, Tocco R. Trace metals and organic geochemistry of the Machiques Member (Aptian-Albian) and La Luna Formation (Cenomanian-Campanian), Venezuela. Chem Geol, 1999, 160: 19-8 CrossRef
    23. Tonger, Liu W H, Xu Y C. The discussion on anoxic environments and its geochemical identifying indices (in Chinese). Acta Sediment Sin, 2004, 22: 365-72
    24. Jiang S Y, Zhao H X, Chen Y Q, et al. Trace and rare earth element geochemistry of phosphate nodules from the lower Cambrian black shale sequence in the Mufu Mountain of Nanjing, Jiangsu Province, China. Chem Geol, 2007, 244: 584-04 CrossRef
    25. Chang H J, Chu X L, Feng L J, et al. Terminal Ediacaran anoxia in deep-ocean: Trace element evidence from cherts in the Liuchapo Formation, South China. Sci China Ser D-Earth Sci, 2009, 52: 807-22 CrossRef
    26. Anbar A D. Molybdenum stable isotopes: Observations, interpretations and directions. Rev Mineral Geochem, 2004, 55: 429-54 CrossRef
    27. Siebert C, Nagler T F, von Blanckenburg F, et al. Molybdenum isotope records as a potential proxy for paleoceanography. Earth Planet Sci Lett, 2003. 211: 159-71 CrossRef
    28. Barling J, Arnold G L, Anbar A D. Natural mass-dependent variations in the isotopic composition of molybdenum. Earth Planet Sci Lett, 2001, 193: 447-57 CrossRef
    29. Anbar A D, Knoll A H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science, 2002, 297: 1137-142 CrossRef
    30. Arnold G L, Anbar A D, Barling J, et al. Molybdenum isotope evidence for widespread anoxia in mid-Proterozoic oceans. Science, 2004, 304: 87-0 CrossRef
    31. Siebert C, N?gler T F, Kramers J D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem Geophys Geosyst, 2001, 2: 1032-047 CrossRef
    32. Siebert C, McManus J, Bice A, et al. Molybdenum isotope signatures in continental margin marine sediments. Earth Planet Sci Lett, 2006, 241: 723-33 CrossRef
    33. Jiang S Y, Ling H F, Zhao K D, et al. A discussion on Mo isotopic compositions of black shale and Ni-Mo sulfide bed in the early Cambrian Niutitang Formation in south China (in Chinese). Acta Petrol Mineral, 2008, 27: 341-45
    34. Zhou L, Gao S, Hawkesworth C, et al. Preliminary Mo isotope data of Phanerozoic clastic sediments from the northern margin of the Yangtze block and its implication for paleoenvironmental conditions, Chin Sci Bull, 2008, 53: 2630-638
    35. Wen H J, Zhang Y. X, Fan H F, et al. Mo isotopes in the Lower Cambrian formation of southern China and its implications on paleoocean environment. Chin Sci Bull, 2009, 54: 4756-762 CrossRef
    36. Erickson B E, Helz G R. Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates. Geochim Cosmochim Acta, 2000, 64: 1149-158 CrossRef
    37. Morford J L, Emerson S. The geochemistry of redox sensitive trace metals in sediments. Geochim Cosmochim Acta, 1999, 63: 1735-750 CrossRef
    38. Ji Z S, Yao J X, Yukio I, et al. Conodont Biostratigraphy across the Permian-Triassic Boundary at Chaotian, in Northern Sichuan, China. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 252: 39-5 CrossRef
    39. Sun Y C. Graptolite-bearing strata of China. Bull Geol Soc China, 1931, 10: 291-99 CrossRef
    40. Mu E, Li J, Ge M, et al. Paleogeographic maps of the Late Ordovician in the Central China region and their explanation (in Chinese). J Stratigr, 1981, 5: 165-70
    41. Chen X, Rong J. Concepts and analysis of mass extinction with the Late Ordovician events as an example. Hist Biol, 1991, 5: 107-21 CrossRef
    42. Chen X, Rowley D, Rong J, et al. Late Precambrian through Early Paleozoic stratigraphic and tectonic evolution of the Nanling Region, Hunan Province, South China. Int Geol Rev, 1997, 39: 469-78 CrossRef
    43. Chen X, Rong J, Li Y, et al. Facies patterns and geography of the Yangtze region, South China, through the Ordovician and Silurian transition. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 204: 353-72 CrossRef
    44. Chen X, Rong J Y, Fan J X, et al. The Global Boundary Stratotype Section and Point (GSSP) for the base of the Hirnantian Stage (the uppermost of the Ordovician System). Episodes, 2006, 29: 183-96
    45. Wang K, Charles J Orth, Moses Attrep Jr, et al. The great latest Ordovician extinction on the South China Plate: Chemostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze Platform. Palaeogeogr Palaeoclimatol Palaeoecol,1993, 104: 61-9 CrossRef
    46. Su W B, He L Q, Wang Y B. K-Bentonite Beds and High-Resolution Integrated Stratigraphy of the Uppermost Ordovician Wufeng and the Lowest Silurian Longmaxi Formations in South China. Sci China Ser D-Earth Sci, 2003, 46: 1121-133 CrossRef
    47. Fan J X, Chen X. Preliminary report on the Late Ordovician graptolite extinction in the Yangtze region. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 245: 82-4 CrossRef
    48. Fan J X, Peng P A, Melchin M J. Carbon isotopes and event stratigraphy near the Ordovician-Silurian boundary, Yichang, South China. Palaeogeogr Palaeoclimatol Palaeoecol, 2009, 276: 160-69 CrossRef
    49. Yan D T, Chen D Z, Wang Q C, et al. Geochemical changes across the Ordovician-Silurian transition on the Yangtze Platform, South China. Sci China Ser D-Earth Sci, 2009, 52: 38-4 CrossRef
    50. Yang Z Y, Yin H F, Wu S B, et al. Permian-Triassic Boundary Stratigraphy and Fauna of South China (in Chinese). Beijing: Geological Publishing House, 1987. 1-80
    51. Yin H F, Zhang K X, Tong J N, et al. The Global Stratotype Section and Point (GSSP) of the Permian-Triassic Boundary. Episodes, 2001, 24: 102-14
    52. Xie X N, Li H J, Xiong X, et al. Main controlling factors of organic matter richness in a Permian Section of Guangyuan, Northeast Sichuan. Earth Sci—China Univ Geosci, 2008, 19: 507-17
    53. Poulson R L, Siebert C, McManus J, et al. Authigenic molybdenum isotope signatures in marine sediments. Geology, 2006, 34: 617-20 CrossRef
    54. Li H J, Xie X N, Lin Z L, et al. Organic matter enrichment of Dalong Formation in Guangyuan area of the Sichuan Basin (in Chinese). Geol Sci Tech Inf, 2009, 28: 89-03
    55. Piper D Z. Seawater as the source of minor elements in black shales, phosphorites and other sedimentary rocks. Chem Geol, 1994, 117: 95-14 CrossRef
    56. Scheffler K, Buehmann D, Schwark L. Analysis of late Palaeozoic glacial to postglacial sedimentary successions in South Africa by geochemical proxies—Response to climate evolution and sedimentary environment. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 240: 184-03 CrossRef
    57. Wright J, Schrader H, Holser W T. Paleoredox variations in ancient oceans recorded by rare earth elements in fossil apatite. Geochim Cosmochim Acta, 1987, 51: 631-44 CrossRef
    58. Bellanca A, Masseti D, Neri R. Rare earth elements in limestone/marlstone couplets from the Albian-Cenomanian Cismon section (Venetian region, northern Italy): Assessing REE sensitivity to environmental changes. Chem Geol, 1997, 141: 141-52 CrossRef
    59. Calvert S E, Pedersen T F. Geochemistry of Recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol, 1993, 113: 67-8 CrossRef
    60. Glikson M. Trace elements in oil shales, their source and organic association with particular reference to Australian deposits. Chem Geol, 1985, 53: 155-74 CrossRef
    61. Thomson J, Ian J arvis, Darryi R H Green, et al. Mobility and immobility of redox-sensitive elements in deep-sea turbidities during shallow burial. Geochim Cosmochim Acta, 1998, 62: 643-56 CrossRef
    62. Rudnicki, M D, Elderfield H. A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochim Cosmochim Acta, 1993, 57: 2939-957 CrossRef
    63. Elderfield H, Schultz A. Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annu Rev Earth Planet Sci, 1996, 24: 191-24 CrossRef
    64. McManus J, William M Berelson, Silke S, et al. Molybdenum and uranium geochemistry in continental margin sediments: Paleoproxy potential. Geochim Cosmochim Acta, 2006, 70: 4643-662 CrossRef
    65. Zhou L, Zhou H B, Li M, et al. Molybdenum isotope signatures from Yangtze craton continental margin and its indication to organic burial rate (in Chinese). Earth Sci—J China Univ Geosci, 2007, 32: 759-66
    66. Zhou L, Zhang H Q, Wang J, et al. Assessment on Redox Conditions and Organic Burial of Siliciferous Sediments at the Latest Permian Dalong Formation in Shangsi, Sichuan, South China. Earth Sci—J China Univ Geosci, 2008, 19: 496-06
    67. Yin H F, Xie S C, Qing J Z, et al., Discussion on geobiology, biogeology and geobiofacies. Sci China Ser D-Earth Sci, 2008, 51: 1516-524 CrossRef
    68. Reitz A, Wille M, Nagler T F, et al. Atypical Mo isotopes signatures in eastern Mediterranean sediments. Chem Geol, 2007, 245: 1- CrossRef
  • 作者单位:Lian Zhou (1)
    Jie Su (1)
    JunHua Huang (1)
    JiaXing Yan (2)
    XiNong Xie (3)
    Shan Gao (1)
    MengNing Dai (4)
    Tonger (5)

    1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, 430074, China
    2. Key Laboratory of Biogeology and Environmental Geology of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
    3. Key Laboratory of Tectonics and Petroleum Resources of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
    4. State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an, 710069, China
    5. Wuxi Institute of Petroleum Geology, China Petroleum & Chemical Corporation, Wuxi, 214151, China
  • ISSN:1869-1897
文摘
This paper investigates the high-solution of Mo isotopes and uses trace-element analyses for fresh and representative black shales and siliceous shales collected from the transition between the Late Ordovician and the Early Silurian at the Wangjiawan section in Yichang and the Late Permian Dalong Formation in the Shangsi Section of Sichuan. The applicability of different geochemical parameters used as paleo-oxygenation indices are also compared. The preliminary results show that V/(V+Ni), Uauth (auth U), V/Cr, Ceanom and U/Th have a scattered variation range, but most samples plot within the suboxic-anoxic fields. The suboxic-anoxic environment was dominant during the deposition and formation of the two anoxic facies. These redox indicators show little correspondence to the δ 98Mo values. The U/Mo ratio can be used as a potential proxy for the paleo-redox conditions due to the possibility that Mo is enriched relative to U at different redox gradients during early diagenesis. This evidence is more significant for the euxinicity condition and corresponds to positive δ 98Mo (>1.5- values with low U/Mo ratios. This evidence is likely related to the depositional conditions near the boundary between anoxic and euxinic environments, which are characterised by low bioturbation or water circulation. Other samples reveal a wide scatter of U/Mo ratios and δ 98Mo <1.5- These results are likely due to punctuated improvements in oxygenation with intense bioturbation or water circulation, which led to the redistribution of trace element.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700