Evaluating Differences in Transport Behavior of Sodium Chloride and Brilliant Blue FCF in Sand Columns
详细信息    查看全文
  • 作者:Jiazhong Qian ; Yanan Wu ; Yong Zhang ; Yong Liu ; Yuehan Lu…
  • 关键词:Groundwater tracers ; Brilliant blue FCF ; Sodium chloride ; Sorption ; Experiments
  • 刊名:Transport in Porous Media
  • 出版年:2015
  • 出版时间:September 2015
  • 年:2015
  • 卷:109
  • 期:3
  • 页码:765-779
  • 全文大小:1,035 KB
  • 参考文献:Church, M.: Electrochemical and fluorometric tracer techniques for streamflow measurements. Tech. Bull. 12, 72 (1974)
    Cowie, R., Williams, M.W., Wireman, M., Runkel, R.L.: Use of natural and applied tracers to guide targeted remediation efforts in an acid mine drainage system, Colorado Rockies, USA. Water 6(4), 745鈥?77 (2014)CrossRef
    Davis, S.N., Thompson, G.M., Bentley, H.W., Stiles, G.: Ground-water tracers鈥揳 short review. Ground Water 18, 14鈥?3 (1980)CrossRef
    Davis, S., Campbell, D., Bently, H., Flynn, T.: Introduction to Groundwater Tracers: Project Summary. US EPA/600/2-85/022. Ada. Oklahoma: US EPA (1986)
    Flury, M., Fluhler, H.: Brilliant blue FCF as a dye tracer for solute transport studies鈥攁 toxicological overview. J. Environ. Quality 23(5), 1108鈥?112 (1994)CrossRef
    Flury, M., Fluhler, H.: Tracer characteristics of brilliant blue FCF. Soil Sci. Soc. Am. J. 59, 22鈥?7 (1995)CrossRef
    Germ谩n-Heins, J., Flury, M.: Sorption of brilliant blue FCF in soils as affected by pH and ionic strength. Geoderma 97(1), 87鈥?01 (2000)CrossRef
    Haggerty, R., Gorelick, S.M.: Multiple-rate mass-transfer for modeling diffusion and surface-reactions in media with porescale heterogeneity. Water Resour. Res. 31, 2383鈥?400 (1995)CrossRef
    Hagler, A.: Beitragzur Aetiologie des Typhus und zur Trink-was serlehre. Dtsch. Arch. Klin. Med. 11, 237鈥?67 (1873)
    Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34, 451鈥?65 (1999)CrossRef
    Hu, Q., Brusseau, M.L.: Effect of solute size on transport in structured porous media. Water Resour. Res. 31(7), 1637鈥?646 (1995)CrossRef
    Kasteel, R., Vogel, H.J., Roth, K.: Effect of non-linear adsorption on the transport behaviour of brilliant blue in a field soil. Eur. J. Soil Sci. 53(2), 231鈥?40 (2002)CrossRef
    Kaufman, W.J., Orlob, G.T.: Measuring groundwater movement with radioactive and chemical tracers. J. Am. Water Works Assoc. 48, 559鈥?72 (1955)
    Lake, C.B., Rowe, R.K.: Diffusion of sodium and chloride through geosynthetic clay liners. Geotext. Geomembr. 18(2), 103鈥?31 (2000)CrossRef
    Limousin, G., Gaudet, J.P., Charlet, L., Szenknect, S., Barthes, V., Krimissa, M.: Sorption isotherms: a review on physical bases, modeling and measurement. Appl. Geochem. 22(2), 249鈥?75 (2007)CrossRef
    Liu, Y., Qian, J.Z., Ma, L., Zhao, W.D., Luo, Q.K.: Improvement of numerical simulation of bimolecular reactive transport using time-dependent parameters. J. Hydrodyn. 27(1), 840鈥?47 (2015)
    Manteca, I.A., Alhama, F., Estrella, T.R.: Chemical and physical parameters as trace markers of anthropogenic-induced salinity in the Agua Amarga coastal aquifer (southern Spain). Hydrogeol. J. 20(7), 1315鈥?329 (2012)CrossRef
    Morris, C., Mooney, S.J., Young, S.D.: Sorption and desorption characteristics of the dye tracer, brilliant blue FCF, in sandy and clay soils. Geoderma 146(3), 434鈥?38 (2008)CrossRef
    Neal, C., Kirchner, J.W.: Sodium and chloride levels in rainfall, mist, streamwater and groundwater at the Plynlimon catchments, mid-Wales: inferences on hydrological and chemical controls. Hydrol. Earth Syst. Sci. Discuss. 4(2), 295鈥?10 (2000)CrossRef
    Pickens, J.F., Grisak, G.E.: Scale-dependent dispersion in a stratified granular aquifer. Water Resour. Res. 17, 1191鈥?211 (1981)CrossRef
    Pitrak, M., Mares, S., Kobr, M.: A simple borehole dilution technique in measuring horizontal ground water flow. Groundwater 45(1), 89鈥?2 (2007)CrossRef
    Schwen, A., Backus, J., Yang, Y., Wendroth, O.: Characterizing land use impact on multi-tracer displacement and soil structure. J. Hydrol. 519, 1752鈥?768 (2014)CrossRef
    Singha, K., Gorelick, S.M.: Saline tracer visualized with three-dimensional electrical resistivity tomography: field-scale spatial moment analysis. Water Resour. Res. 41(5) (2005). doi:10.鈥?029/鈥?04WR3460
    Singhal, B.B.S., Gupta, R.P.: Tracer and isotope techniques. In: Applied Hydrogeology of Fractured Rocks (pp. 193鈥?03), 2nd edn. Springer Netherlands (2010)
    Steenhuis, T.S., Staubitz, W., Andreini, M.S., Surface, J., Richard, T.L., Paulsen, R., Pickering, N.B., Hagerman, J.R., Geohring, L.D.:Preferential movement of pesticides and trancers in agricultural soils. J. Irrig. Drain. Eng. 116, 50鈥?6 (1990)
    Worthington, S.R.H., Smart, C.C.: Determination of tracer mass for effective groundwater tracer tests. Carbonates Evaporites (2013). doi:10.鈥?007/鈥媠13146-013-0171-4
    Yang, M., Michael, D.A., Jawitz, J.W.: Light reflection visualization to determine solute diffusion into clays. J. Contam. Hydrol. 161, 1鈥? (2014)CrossRef
    Zhang, H., Selim, H.M.: Modeling the transport and retention of arsenic (V) in soils. Soil Sci. Soc. Am. J. 70(5), 1677鈥?687 (2006)CrossRef
    Zhou, L., Selim, H.M.: Scale-dependent dispersion in soils: an overview. Adv. Agron. 80, 223鈥?63 (2003)CrossRef
  • 作者单位:Jiazhong Qian (1)
    Yanan Wu (1)
    Yong Zhang (2) (3)
    Yong Liu (4)
    Yuehan Lu (2)
    Zhongbo Yu (5)

    1. School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China
    2. Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA
    3. Hohai University, Nanjing, 210098, China
    4. School of Biotechnology and Food Engineering, Hefei University of Technology, Hefei, 230009, China
    5. Department of Geoscience, University of Nevada, Las Vegas, NV, 89154, USA
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geotechnical Engineering
    Industrial Chemistry and Chemical Engineering
    Civil Engineering
    Hydrogeology
    Mechanics, Fluids and Thermodynamics
  • 出版者:Springer Netherlands
  • ISSN:1573-1634
文摘
Groundwater tracers such as sodium chloride (NaCl) and the food color brilliant blue FCF (BBF) had been widely used to evaluate flow dynamics, but the possible discrepancy of transport dynamics between the two tracers through a same medium remains obscure. In order to fill this knowledge gap, we combined laboratory experiments and model analysis for transport of the above tracers. We first conducted three progressive experiments, including (1) transport experiments of NaCl and BBF through saturated sand columns packed with uniform glass beads; (2) transport experiments of the two tracers through silica sand columns as a function of travel distances and flow rates; and (3) a long-term adsorption experiment exploring the adsorption of the two tracers to silica sands. All laboratory results show that NaCl exhibits slower and smaller peaks in tracer breakthrough curves than BBF. Further model analysis using the standard advection-dispersion equation (with a retardation coefficient to account for equilibrium sorption) demonstrates that the NaCl plume has a larger dispersion coefficient than that of BBF. Both the laboratory and a pseudo-kinetic model also reveal that NaCl might be observed more by the medium than BBF. Therefore, although NaCl is well known to be a more conservative tracer than BBF, our laboratory and numerical experiments suggest the opposite. NaCl can be less conservative than BBF through laboratory-scale sand columns, probably due to (1) stronger sorption of NaCl to silica sand, and/or (2) relatively stronger mass exchange between mobile and immobile zones in macroscopically homogeneous porous media. Keywords Groundwater tracers Brilliant blue FCF Sodium chloride Sorption Experiments

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700