Bacterial phylogenetic tree construction based on genomic translation stop signals
详细信息    查看全文
  • 作者:Lijing Xu (1)
    Jimmy Kuo (2)
    Jong-Kang Liu (3)
    Tit-Yee Wong (1)
  • 刊名:Microbial Informatics and Experimentation
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:2
  • 期:1
  • 全文大小:808KB
  • 参考文献:1. Nevo E: Evolution of genome-phenome diversity under environmental stress. / Proc Natl Acad Sci U S A 2001, 98:6233-240. CrossRef
    2. Hershberg R, Petrov DA: Selection on codon bias. / Annu Rev Genet 2008, 42:287-99. CrossRef
    3. Nielsen R: Molecular signatures of natural selection. / Annu Rev Genet 2005, 39:197-18. CrossRef
    4. Gupta RS: The branching order and phylogenetic placement of species from completed bacterial genomes, based on conserved indels found in various proteins. / Int Microbiol 2001, 4:187-02. CrossRef
    5. Ermolaeva MD: Synonymous codon usage in bacteria. / Curr Issues Mol Biol 2001, 3:91-7.
    6. Tats A, Tenson T, Remm M: Preferred and avoided codon pairs in three domains of life. / BMC Genomics 2008, 9:463. CrossRef
    7. Campion SR, Ameen AS, Lai L, King JM, Munzenmaier TN: Dipeptide frequency/bias analysis identifies conserved sites of nonrandomness shared by cysteine-rich motifs. / Proteins 2001, 44:321-28. CrossRef
    8. Plotkin JB, Kudla G: Synonymous but not the same: the causes and consequences of codon bias. / Nat Rev Genet 2011, 12:32-2. CrossRef
    9. Roth JR: UGA nonsense mutations in Salmonella typhimurium. / J Bacteriol 1970, 102:467-75.
    10. Ryden SM, Isaksson LA: A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. / Mol Gen Genet 1984, 193:38-5. CrossRef
    11. McInerney P, Mizutani T, Shiba T: Inorganic polyphosphate interacts with ribosomes and promotes translation fidelity in vitro and in vivo. / Mol Microbiol 2006, 60:438-47. CrossRef
    12. Rospert S, Rakwalska M, Dubaquie Y: Polypeptide chain termination and stop codon readthrough on eukaryotic ribosomes. / Rev Physiol Biochem Pharmacol 2005, 155:1-0. CrossRef
    13. Clarke CH, Miller PG: Consequences of frameshift mutations in the trp A, trp B and lac I genes of Escherichia coli and in Salmonella typhimurium. / J Theor Biol 1982, 96:367-79. CrossRef
    14. Seligmann H, Pollock DD: The Ambush Hypothesis: Hidden Stop Codons Prevent Off-Frame Gene Reading. / DNA Cell Biol 2004, 23:701-05. CrossRef
    15. Singh TR, Pardasani KR: Ambush hypothesis revisited: Evidences for phylogenetic trends. / Comput Biol Chem 2009, 33:239-44. CrossRef
    16. Cai HJ, Tsoi H-W, Lam E, Yuen K-Y: Natural selection retains overrepresented out-of-frame stop codons against frameshift peptides in prokaryotes. / BMC Genomics 2010, 11:491. CrossRef
    17. Wong TY, Fernandes S, Sankhon N, Leong PP, Kuo J, Liu JK: Role of premature stop codons in bacterial evolution. / J Bacteriol 2008, 190:6718-725. CrossRef
    18. Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display of genome-wide expression patterns. / Proc Natl Acad Sci U S A 1998, 95:14863-4868. CrossRef
    19. Fournier P-E, Raoult D: Bacteriology, Taxonomy, and Phylogeny of Rickettsia. In / Rickettsial Diseases. Edited by: Raoult D, Parola P. Informa Healthcare USA. Inc 2007, New York; 2007:1-5. CrossRef
    20. Johnston KL, Taylor MJ: Wolbachia and Filarial Nematode Diseases in Humans. In / Rickettsial Diseases. Edited by: Raoult D, Parola P. Informa Healthcare, New York; 2007:302-13.
    21. Pfarr K, Foster J, Slatko B, Hoerauf A, Eisen JA: On the taxonomic status of the intracellular bacterium Wolbachia pipientis: should this species name include the intracellular bacteria of filarial nematodes? / Int J Syst Evol Microbiol 2007, 57:1677-678. CrossRef
    22. Lo N, Paraskevopoulos C, Bourtzis K, O'Neill SL, Werren JH, Bordenstein SR, Bandi C: Taxonomic status of the intracellular bacterium Wolbachia pipientis. / Int J Syst Evol Microbiol 2007, 57:654-57. CrossRef
    23. Hedlund BP, Staley JT: Phylogeny of the genus Simonsiella and other members of the Neisseriaceae. / Int J Syst Evol Microbiol 2002, 52:1377-382. CrossRef
    24. Jyssum K: Origin and sequence of chromosome replication in Neisseria meningitidis: influence of a genetic factor determining competence. / J Bacteriol 1969, 99:757-63.
    25. Tonjum T: Family I. Neisseriaceae. In / Bergey’s Manual of Systematic Bacteriology. Volume 2. Edited by: Brenner D, Krieg N, Staley J. Springer, N.Y; 2005. 798:774-98
    26. Pupo GM, Lan R, Reeves PR: Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. / Proc Natl Acad Sci U S A 2000, 97:10567-0572. CrossRef
    27. Ochman H, Elwyn S, Moran NA: Calibrating bacterial evolution. / Proc Natl Acad Sci U S A 1999, 96:12638-2643. CrossRef
    28. Ibrahim A, Goebel BM, Liesack W, Griffiths M, Stackebrandt E: The phylogeny of the genus Yersinia based on 16?S rDNA sequences. / FEMS Microbiol Lett 1993, 114:173-77. CrossRef
    29. Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E: Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. / Proc Natl Acad Sci U S A 1999, 96:14043-4048. CrossRef
    30. El Karoui M, Biaudet V, Schbath S, Gruss A: Characteristics of Chi distribution on different bacterial genomes. / Res Microbiol 1999, 150:579-87. CrossRef
    31. Lobry JR: Asymmetric substitution patterns in the two DNA strands of bacteria. / Mol Biol Evol 1996, 13:660-65. CrossRef
    32. Rocha EP, Danchin A: Gene essentiality determines chromosome organisation in bacteria. / Nucleic Acids Res 2003, 31:6570-577. CrossRef
    33. Niki H, Yamaichi Y, Hiraga S: Dynamic organization of chromosomal DNA in Escherichia coli. / Genes Dev 2000, 14:212-23.
    34. Fox GE, Wisotzkey JD, Jurtshuk P: How close is close: 16?S rRNA sequence identity may not be sufficient to guarantee species identity. / Int J Syst Bacteriol 1992, 42:166-70. CrossRef
    35. Gillis M, Vabdanne P, DeVos P, Swings J, Kersters K: Polyphasic Taxonomy. In / Bergey’s Manual of Systematic Bacteriology. Volume 1. Edited by: Boone D-R, Castenholz R-W. Springer 2001, New York; Springer 2001:43-8. CrossRef
    36. Snel B, Bork P, Huynen MA: Genome phylogeny based on gene content. / Nat Genet 1999, 21:108-10. CrossRef
    37. Cridge AG, Major LL, Mahagaonkar AA, Poole ES, Isaksson LA, Tate WP: Comparison of characteristics and function of translation termination signals between and within prokaryotic and eukaryotic organisms. / Nucleic Acids Res 2006, 34:1959-973. CrossRef
    38. Sun J, Chen M, Xu J, Luo J: Relationships among stop codon usage bias, its context, isochores, and gene expression level in various eukaryotes. / J Mol Evol 2005, 61:437-44. CrossRef
    39. Seligmann H: The ambush hypothesis at the whole-organism level: Off frame, ‘hidden-stops in vertebrate mitochondrial genes increase developmental stability. / Comput Biol Chem 2010, 34:80-5. CrossRef
    40. Chothia C, Gough J, Vogel C, Teichmann SA: Evolution of the protein repertoire. / Science 2003, 300:1701-703. CrossRef
    41. Aguilera A: The connection between transcription and genomic instability. / EMBO J 2002, 21:195-01. CrossRef
    42. Gottipati P, Helleday T: Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. / Mutagenesis 2009, 24:203-10. CrossRef
    43. Prado F, Aguilera A: Impairment of replication fork progression mediates RNA polII transcription-associated recombination. / EMBO J 2005, 24:1267-276. CrossRef
    44. Song J, Ware A, Liu SL: Wavelet to predict bacterial ori and ter: a tendency towards a physical balance. / BMC Genomics 2003, 4:17. CrossRef
    45. Higgins NP: / The bacterial chromosome. ASM Press, Washington, D.C.; 2005.
    46. Skarstad K, Boye E, Steen HB: Timing of initiation of chromosome replication in individual Escherichia coli cells. / EMBO J 1986, 5:1711-717.
    47. Bipatnath M, Dennis PP, Bremer H: Initiation and velocity of chromosome replication in Escherichia coli B/r and K-12. / J Bacteriol 1998, 180:265-73.
    48. Rocha EP, Fralick J, Vediyappan G, Danchin A, Norris V: A strand-specific model for chromosome segregation in bacteria. / Mol Microbiol 2003, 49:895-03. CrossRef
    49. Zechiedrich EL, Cozzarelli NR: Roles of topoisomerase IV and DNA gyrase in DNA unlinking during replication in Escherichia coli. / Genes Dev 1995, 9:2859-869. CrossRef
    50. Rothstein R, Michel B, Gangloff S: Replication fork pausing and recombination or “gimme a break- / Genes Dev 2000, 14:1-0.
    51. Eremeeva ME, Madan A, Shaw CD, Tang K, Dasch GA: New perspectives on rickettsial evolution from new genome sequences of rickettsia, particularly R. canadensis, and Orientia tsutsugamushi. / Ann N Y Acad Sci 2005, 1063:47-3. CrossRef
    52. Chain PSG, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, / et al.: Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. / Proc Natl Acad Sci U S A 2004, 101:13826-3831. CrossRef
    53. Friedrich A, Prust C, Hartsch T, Henne A, Averhoff B: Molecular analyses of the natural transformation machinery and identification of pilus structures in the extremely thermophilic bacterium Thermus thermophilus strain HB27. / Appl Environ Microbiol 2002, 68:745-55. CrossRef
    54. Woese CR, Fox GE: Phylogenetic structure of the prokaryotic domain: the primary kingdoms. / Proc Natl Acad Sci U S A 1977, 74:5088-090. CrossRef
    55. Bapteste E, Boucher Y, Leigh J, Doolittle WF: Phylogenetic reconstruction and lateral gene transfer. / Trends Microbiol 2004, 12:406-11. CrossRef
    56. Harrison CJ, Langdale JA: A step by step guide to phylogeny reconstruction. / Plant J 2006, 45:561-72. CrossRef
    57. Wayne LG: International Committee on Systematic Bacteriology: announcement of the report of the ad hoc Committee on Reconciliation of Approaches to Bacterial Systematics. / Zentralbl Bakteriol Mikrobiol Hyg A 1988, 268:433-34.
    58. Stackebrandt E, Frederiksen W, Garrity GM, Grimont PA, Kampfer P, Maiden MC, Nesme X, Rossello-Mora R, Swings J, Truper HG, / et al.: Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. / Int J Syst Evol Microbiol 2002, 52:1043-047. CrossRef
    59. Charlebois RL, Doolittle WF: Computing prokaryotic gene ubiquity: rescuing the core from extinction. / Genome Res 2004, 14:2469-477. CrossRef
    60. Vallender EJ, Paschall JE, Malcom CM, Lahn BT, Wyckoff GJ: SPEED: a molecular-evolution-based database of mammalian orthologous groups. / Bioinformatics 2006, 22:2835-837. CrossRef
    61. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ, Stackebrandt E, de Peer YV, Vandamme P, Thompson FL, Swings J: Re-evaluating prokaryotic species. / Nat Rev Micro 2005, 3:733-39. CrossRef
    62. Dewhirst FE, Shen Z, Scimeca MS, Stokes LN, Boumenna T, Chen T, Paster BJ, Fox JG: Discordant 16?S and 23?S rRNA Gene Phylogenies for the Genus Helicobacter: Implications for Phylogenetic Inference and Systematics. / J Bacteriol 2005, 187:6106-118. CrossRef
    63. Susko E, Leigh J, Doolittle WF, Bapteste E: Visualizing and assessing phylogenetic congruence of core gene sets: a case study of the gamma-proteobacteria. / Mol Biol Evol 2006, 23:1019-030. CrossRef
    64. Kurland CG, Canback B, Berg OG: Horizontal gene transfer: A critical view. / Proc Natl Acad Sci U S A 2003, 100:9658-662. CrossRef
  • 作者单位:Lijing Xu (1)
    Jimmy Kuo (2)
    Jong-Kang Liu (3)
    Tit-Yee Wong (1)

    1. Department of Biological Sciences, Bioinformatics Program, The University of Memphis, Memphis, TN, USA
    2. Department of Planning and Research, National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
    3. Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
  • ISSN:2042-5783
文摘
Background The efficiencies of the stop codons TAA, TAG, and TGA in protein synthesis termination are not the same. These variations could allow many genes to be regulated. There are many similar nucleotide trimers found on the second and third reading-frames of a gene. They are called premature stop codons (PSC). Like stop codons, the PSC in bacterial genomes are also highly bias in terms of their quantities and qualities on the genes. Phylogenetically related species often share a similar PSC profile. We want to know whether the selective forces that influence the stop codons and the PSC usage biases in a genome are related. We also wish to know how strong these trimers in a genome are related to the natural history of the bacterium. Knowing these relations may provide better knowledge in the phylogeny of bacteria Results A 16SrRNA-alignment tree of 19 well-studied α-, β- and γ-Proteobacteria Type species is used as standard reference for bacterial phylogeny. The genomes of sixty-one bacteria, belonging to the α-, β- and γ-Proteobacteria subphyla, are used for this study. The stop codons and PSC are collectively termed “Translation Stop Signals-(TSS). A gene is represented by nine scalars corresponding to the numbers of counts of TAA, TAG, and TGA on each of the three reading-frames of that gene. “Translation Stop Signals Ratio-(TSSR) is the ratio between the TSS counts. Four types of TSSR are investigated. The TSSR-1, TSSR-2 and TSSR-3 are each a 3-scalar series corresponding respectively to the average ratio of TAA: TAG: TGA on the first, second, and third reading-frames of all genes in a genome. The Genomic-TSSR is a 9-scalar series representing the ratio of distribution of all TSS on the three reading-frames of all genes in a genome. Results show that bacteria grouped by their similarities based on TSSR-1, TSSR-2, or TSSR-3 values could only partially resolve the phylogeny of the species. However, grouping bacteria based on thier Genomic-TSSR values resulted in clusters of bacteria identical to those bacterial clusters of the reference tree. Unlike the 16SrRNA method, the Genomic-TSSR tree is also able to separate closely related species/strains at high resolution. Species and strains separated by the Genomic-TSSR grouping method are often in good agreement with those classified by other taxonomic methods. Correspondence analysis of individual genes shows that most genes in a bacterial genome share a similar TSSR value. However, within a chromosome, the Genic-TSSR values of genes near the replication origin region (Ori) are more similar to each other than those genes near the terminus region (Ter). Conclusion The translation stop signals on the three reading-frames of the genes on a bacterial genome are interrelated, possibly due to frequent off-frame recombination facilitated by translational-associated recombination (TSR). However, TSR may not occur randomly in a bacterial chromosome. Genes near the Ori region are often highly expressed and a bacterium always maintains multiple copies of Ori. Frequent collisions between DNA- polymerase and RNA-polymerase would create many DNA strand-breaks on the genes; whereas DNA strand-break induced homologues-recombination is more likely to take place between genes with similar sequence. Thus, localized recombination could explain why the TSSR of genes near the Ori region are more similar to each other. The quantity and quality of these TSS in a genome strongly reflect the natural history of a bacterium. We propose that the Genomic- TSSR can be used as a subjective biomarker to represent the phyletic status of a bacterium.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700