Subwavelength metal optics and antireflection
详细信息    查看全文
  • 作者:Aaron Isenstadt (11)
    Jimmy Xu (11)
  • 关键词:impedance ; matching ; metamaterials ; meta ; films ; anti ; reflection
  • 刊名:Electronic Materials Letters
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:9
  • 期:2
  • 页码:125-132
  • 全文大小:439 KB
  • 参考文献:1. D. Cheng, J. Xie, H. Zhang, C. Wang, and N. Zhang, Pantoscopic and polarization-insensitive perfect absorbers in the middle infrared spectrum, / J. Opt. Soc. Am. B 29 1503 (2012). CrossRef
    2. J. Zhou, E. N. Economon, T. Koschny, and C. M. Soukoulis, Unifying approach to left-handed material design, / Opt. Lett. 31 3620 (2006). CrossRef
    3. C. F. Bohren, How can a particle absorb more than the light incident upon it?, / Am. J. Phys. 51, (1983).
    4. N. Landy, S. Sajuyigbe, J. Mock, D. Smith, and W. Padilla, Perfect metamaterial absorber, / Phys. Rev. Lett. 100 1 (2008). CrossRef
    5. D. Smith, W. Padilla, D. Vier, S. Nemat-Nasser, and S. Schultz, Composite medium with simultaneously negative permeability and permittivity, / Phys. Rev. Lett. 84 4184 (2000). CrossRef
    6. C. M. Watts, X. Liu, and W. J. Padilla, Metamaterial electromagnetic wave absorbers, / Adv. Mater. 24, OP98 (2012). CrossRef
    7. B. Yao and L. Li, Antennas Propagation and EM Theory (ISAPE), 2010 9th International Symposium on, pp. 1089鈥?092, / Nat. Key Lab. of Sci. & Technol. on Antennas & Microwave, Xidian Univ., Xi鈥檃n, China (2010).
    8. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration, / Opt. Express 19 14260 (2011). CrossRef
    9. J. Hao et al., High performance optical absorber based on a plasmonic metamaterial, / Appl. Phys. Lett. 96 251104 (2010). CrossRef
    10. X. Liu, T. Starr, A. F. Starr, and W. J. Padilla, Infrared spatial and frequency selective metamaterial with near-unity absorbance, / Phys. Rev. Lett. 104 1 (2010).
    11. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers, / Nature Communications 2 517 (2011). CrossRef
    12. J. Hao, L. Zhou, and M. Qiu, Nearly total absorption of light and heat generation by plasmonic metamaterials, / Phys. Rev. B 83 1 (2011).
    13. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, Wideband perfect light absorber at midwave infrared using multiplexed metal structures, / Opt. Lett. 37 371 (2012). CrossRef
    14. G. Dolling, C. Enkrich, M. Wegener, and J. Zhou, Cut-wire pairs and plate pairs as magnetic atoms for optical metamaterials, / Optics 30 3198 (2005).
    15. K. B. Alici and E. Ozbay, Photonic metamaterial absorber designs for infrared solar cell applications, / Proc. SPIE 7772 77721B (2010). CrossRef
    16. C. Lin and R. Chern, Polarization-independent broad-band nearly perfect absorbers in the visible regime, / Opt. Express 19 415 (2011). CrossRef
    17. C.-W. Cheng et al., Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays, / Opt. Express 20 10376 (2012). CrossRef
    18. C. Hu, Z. Zhao, X. Chen, and X. Luo, Realizing near-perfect absorption at visible frequencies, / Opt. Express 17 11039 (2009). CrossRef
    19. Y. Ye and Y. Jin, Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime, / JOSA B 27 498 (2010). CrossRef
    20. X. Liu et al., Taming the blackbody with infrared metamaterials as selective thermal emitters, / Phys. Rev. Lett. 107 4 (2011).
    21. B. Zhang, Y. Zhao, Q. Hao, B. Kiraly, and I. Khoo, Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array, / Optics 19 15221 (2011).
    22. P. R. West et al., Searching for better plasmonic materials, / Laser Photonics Rev. 4 795 (2010). CrossRef
    23. A. Boltasseva and H. A. Atwater, Materials science. Lowloss plasmonic metamaterials, / Science (New York, N.Y.) 331, 290 (2011). CrossRef
    24. G. V. Naik, J. Liu, A. V. Kildishev, V. M. Shalaev, and A. Boltasseva, Demonstration of Al:ZnO as a plasmonic component for near-infrared metamaterials, / Proceedings of the National Academy of Sciences 109 8834 (2012). CrossRef
    25. G. Naik, J. Liu, A. Kildishev, and V. Shalaev, / Negative refraction in Al: ZnO/ZnO metamaterial in the near-infrared, http://arxiv.org/abs/1110.3231 (2011).
    26. Q. Zhao, T. Fan, J. Ding, D. Zhang, Q. Guo, and M. K., Super black and ultrathin amorphous carbon lm inspired by anti-reflection architecture in butterfly wing, / Carbon 49 877.
    27. P. Clapham, Reduction of Lens Reflexion by the 鈥淢oth Eye鈥?Principle, / Nature 244 281 (1973). CrossRef
    28. A. V. Kildishev, L. J. Prokopeva, and E. E. Narimanov, Cylinder light concentrator and absorber: theoretical description, / Opt. Express 18 16646 (2010). CrossRef
    29. B. Wood, Metamaterials and invisibility, / C. R. Phys. 10, 379 (2009). CrossRef
    30. D. Schurig et al., Metamaterial electromagnetic cloak at microwave frequencies, / Science (New York, N.Y.) 314, 977 (2006). CrossRef
    31. A. Polman and H. A. Atwater, Photonic design principles for ultrahigh-efficiency photovoltaics, / Nature Materials 11 174 (2012). CrossRef
    32. I. Puscasu and W. L. Schaich, Narrow-band, tunable infrared emission from arrays of microstrip patches, / Appl. Phys. Lett. 92 233102 (2008). CrossRef
    33. B. Zhu, Y. Feng, J. Zhao, C. Huang, and T. Jiang, Switchable metamaterial reflector/absorber for different polarized electromagnetic waves, / Appl. Phys. Lett. 97 051906 (2010). CrossRef
    34. B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, Dual band switchable metamaterial, / Pr. Electromagn. Res. B. 24 121 (2010). CrossRef
    35. H.-T. Chen et al., Active terahertz metamaterial devices, / Nature 444 597 (2006). CrossRef
    36. N. P. Johnson, R. M. De La Rue, and S. A. De La Rue, Metamaterials at optical frequencies: fabrication and measurements, / Appl. Metamat. 30 1 (2009).
    37. C. Enkrich et al., Focused-ion-beam nanofabrication of near-infrared magnetic metamaterials, / Adv. Mater. 17 2547 (2005). CrossRef
    38. N. Liu et al., Three-dimensional photonic metamaterials at optical frequencies, / Nature Materials 7 31 (2008). CrossRef
    39. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, Infrared perfect absorber and its application as plasmonic sensor, / Nano Lett. 10 2342 (2010). CrossRef
    40. B. Kang et al., Optical switching of near infrared light transmission in metamaterial-liquid crystal cell structure, / Opt. Express 18 16492 (2010). CrossRef
    41. J. Pendry and D. Schurig, Controlling electromagnetic fields, / Science 312 1780 (2006). CrossRef
    42. M. Rahm, S. A. Cummer, D. Schurig, J. B. Pendry, and D. R. Smith, Optical design of reflectionless complex media by finite embedded coordinate transformations, / Phys. Rev. Lett. 100 063903 (2008). CrossRef
    43. S. A. Cummer, B.-I. Popa, D. Schurig, and D. R. Smith, Full-wave simulations of electromagnetic cloaking structures, / Phys. Rev. E 74 1 (2006). CrossRef
  • 作者单位:Aaron Isenstadt (11)
    Jimmy Xu (11)

    11. School of Engineering and Department of Physics, Brown University, Providence, Rhode Island, USA
  • ISSN:2093-6788
文摘
Over the past decade or so, research in metamaterials has opened up new ways in which to control, manipulate, and utilize electromagnetic radiation. One of these new applications is anti-reflection, or unity absorption, primarily achievable through using thin metamaterial films/surfaces (meta-films) incorporating subwavelength features. This review discusses the theoretical and experimental designs for thin metallic-films, with emphasis on absorption in the infrared and visible wavelengths, as well as future endeavors in a host of applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700