Influence of carbon vacancies on the adsorption of Au on TiC(001): a first-principles study
详细信息    查看全文
  • 作者:Haimin Ding ; Qing Liu ; Jinchuan Jie ; Wenli Kang ; Ying Yue…
  • 刊名:Journal of Materials Science
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:51
  • 期:6
  • 页码:2902-2910
  • 全文大小:1,935 KB
  • 参考文献:1.Hammer B, Norskov JK (1995) Why gold is the noblest of all the metals. Nature 376:238–240CrossRef
    2.Chen MS, Goodman DW (2004) The structure of catalytically active Au on titania. Science 306:252–255CrossRef
    3.Klimev H, Fajerwerg K, Chakarova K, Delannoy L, Louis C, Hadjiivanov K (2007) Oxidation of gold metal particles supported on TiO2: an FTIR study by means of low-temperature CO adsorption. J Mater Sci 10:3299–3306. doi:10.​1007/​s10853-006-0777-1 CrossRef
    4.Rodriguez JA, Liu P, Hrbek J, Evans J, Pérez M (2007) Water gas shift reaction on Cu and Au nanoparticles supported on CeO2 (111) and ZnO (000\( \overline{1} \) ): intrinsic activity and importance of support interactions. Angew Chem Int Ed 46:1329–1332
    5.Lopez N, Norskov J (2002) Catalytic CO oxidation by a gold nanoparticle: a density functional study. J Am Chem Soc 124:11262–11263CrossRef
    6.Graciani J, Nambu A, Evans J, Rodriguez JA, Sanz JF (2008) Au ↔ N synergy and N-doping of metal oxide-based photocatalyst. J Am Chem Soc 130:12056–12063CrossRef
    7.He BB, Zhao QG, Zeng ZG, Wang XH, Han S (2015) Effect of hydrothermal reaction time and calcination temperature on properties of Au@CeO2 core–shell catalyst for CO oxidation at low temperature. J Mater Sci 50:6339–6348. doi:10.​1007/​s10853-015-9181-z CrossRef
    8.Ono LK, Sudfeld D, Cuenya BR (2006) In situ gas-phase catalytic properties of TiC-supported size-selected gold nanopartices synthesized by diblock copolymer encapsulation. Surf Sci 600:5041–5050CrossRef
    9.Rodriguez JA, Evans J, Feria L, Vidal AB, Liu P, Nakamura K, Illas F (2013) CO2 hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: production of CO, methanol and methane. J Catal 307:162–169CrossRef
    10.Rodriguez JA, Liu P, Vines F, Illas F, Takahashi Y, Nakamura K (2008) Dissociation of SO2 on Au/TiC(001): Effects of Au-C interactions and charge polarization. Angew Chem Int Ed 47:6685–6689CrossRef
    11.Feria L, Rodriguez JA, Jirsak T, Illas F (2011) Interaction of SO2 with Cu/TiC(001) and Au/TiC(001): Toward a new family of DeSOx catalysts. J Catal 279:352–360CrossRef
    12.Vidal AB, Feria L, Evans J, Takahashi Y, Liu P, Nakamura K, Illas F, Rodriguez JA (2012) CO2 activation and methanol synthesis on novel Au/TiC and Cu/TiC catalysts. J Phys Chem Lett 3(16):2275–2280CrossRef
    13.Asara GG, Ricart JM, Rodriguez JA, Illas F (2015) Exploring the activity of a novel Au/TiC(001) model catalyst towards CO and CO2 hydrogenation. Surf Sci 640:141–149CrossRef
    14.Rodrigueza JA, Liu P, Takahashib Y, Vines F, Feriad L, Florez E, Nakamura K, Illas F (2011) Novel Au-TiC catalysts for CO oxidation and desulfurization processes. Catal Today 166:2–9CrossRef
    15.Rodriguez JA, Liu P, Takahashi Y, Nakamura K, Vines F, Illas F (2009) Desulfurization of thiophene on Au/TiC(001): Au-C interactions and charge polarization. J Am Chem Soc 131:8595–8602CrossRef
    16.Rodriguez JA, Vines F, Illas F, Liu P, Takahashi Y, Nakamura K (2007) Adsorption of gold on TiC(001): Au–C interactions and charge polarization. J Chem Phys 127:211102CrossRef
    17.Florez E, Vines F, Rodriguez JA, Illas F (2009) Adsorption and diffusion of Au atoms on the (001) surface of Ti, Zr, Hf, V, Nb, Ta, and Mo carbides. J Chem Phys 130:244706CrossRef
    18.Rodriguez JA, Ramírez PJ, Asara GG, Vines F, Evans J, Liu P, Ricart JM, Illas F (2014) Charge polarization at a Au-TiC interface and the generation of highly active and selective catalysts for the low-temperature water-gas shift reaction. Angew Chem Int Ed Engl 53(42):11270–11274CrossRef
    19.Scott AJ, Brydson R, Mackenzie M, Craven AJ (2001) Theoretical investigation of the ELNES of transition metal carbides and nitrides for the extraction of structural and bonding information. Phys Rev B 63:245105CrossRef
    20.Tsetseris L, Pantelides ST (2008) Vacancies, interstitials and their complexes in titanium carbide. Acta Mater 56:2864–2871CrossRef
    21.Dridi Z, Bouhafs B, Ruterana P, Aourag H (2002) First-principles calculations of vacancy effects on structural and electronic properties of TiCx and TiNx. J Phys Condens Matter 14:10237–10249CrossRef
    22.Hugosson HW, Korzhavyi P, Jansson U, Johansson B, Eriksson O (2001) Phase stabilities and structural relaxations in substoichiometric TiC1-x. Phys Rev B 63:165116CrossRef
    23.Sanchez A, Abbet S, Heiz U, Schneider WD, Hakkinen H, Barnett RN, Landman U (1999) When gold is not noble: nanoscale gold catalysts. J Phys Chem A 103:9573–9578CrossRef
    24.Lopez N, Norskov JK, Janssens TVW, Carlsson A, Puig-Molina A, Clausen BS, Grunwaldt JD (2004) The adhesion and shape of nanosized Au particles in a Au/TiO2 catalyst. J Catal 225:86–94CrossRef
    25.Wang Y, Hwang GS (2003) Adsorption of Au atoms on stoichiometric and reduced TiO2(110) rutile surfaces: a first principles study. Surf Sci 542:72–80CrossRef
    26.Hasnip PJ, Pickard CJ (2006) Electronic energy minimisation with ultrasoft pseudopotentials. Comp Phys Commun 174:24–29CrossRef
    27.Ahuja R, Eriksson O, Wills JM, Johansson B (1996) Structural, elastic and high-pressure properties of cubic TiC, TiN and TiO. Phys Rev B 53:3072–3079CrossRef
    28.Naitabdi A, Ono LK, Cuenya RB (2006) Local investigation of the electronic properties of size-selected Au nanoparticles by scanning tunneling spectroscopy. Appl Phys Lett 89:043101CrossRef
    29.Rodriguez JA, Illas F (2012) Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Phys Chem Chem Phys 14:427–438CrossRef
    30.Govind N, Petersen M, Fitzgerald G, King-Smith D, Andzelm J (2003) A generalized synchronous transit method for transition state location. Comput Mater Sci 28:250–258CrossRef
    31.Molina LM, Hammer B (2003) Activation of noble metals on metal-carbide surfaces: novel catalysts for CO oxidation, desulfurization and hydrogenation reactions. Phys Rev Lett 90:206102CrossRef
    32.Xu Y, Mavrikakis M (2003) Adsorption and dissociation of O2 on gold surfaces: effect of steps and strain. J Phys Chem B 107:9298–9307CrossRef
    33.Mills G, Gordon MS, Metiu H (2002) The adsorption of molecular oxygen on neutral and negative Aun clusters (n = 2–5). Chem Phys Lett 359:493–499CrossRef
    34.Mills G, Gordon MS, Metiu H (2003) Oxygen adsorption on Au clusters and a rough Au(111) surface: the role of surface flatness, electron confinement, excess electrons, and band gap. J Chem Phys 118:4198–4205CrossRef
    35.Hakkinen H, Abbet W, Sanchez A, Heiz U, Landman U (2003) Electronic, and impurity-doping effects in nanoscale chemistry: supported gold nanoclusters. Angew Chem Int Ed 42:1297–1300CrossRef
    36.Vijay A, Mills G, Metiu H (2003) Adsorption of gold on stoichiometric and reduced rutile TiO2(110) surfaces. J Chem Phys 118:6536–6551CrossRef
  • 作者单位:Haimin Ding (1)
    Qing Liu (1)
    Jinchuan Jie (2)
    Wenli Kang (1)
    Ying Yue (1)
    Xinchun Zhang (1)

    1. School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, 071003, People’s Republic of China
    2. School of Material Science and Engineering, Dalian University of Technology, Dalian, 116024, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Materials Science
    Characterization and Evaluation Materials
    Polymer Sciences
    Continuum Mechanics and Mechanics of Materials
    Crystallography
    Mechanics
  • 出版者:Springer Netherlands
  • ISSN:1573-4803
文摘
In this work, it is found that the adsorption sites and geometries of Au clusters on TiC(001) surfaces containing carbon vacancies are significantly different from that without vacancies. In TiC(001) with carbon vacancies, the most preferential adsorption sites for Au are on top of vacancies sites, and then the sites neighboring the vacancies. The tendency for 3D Au clusters formation in TiC(001) with carbon vacancies is weaker and Au atoms are more likely to form rough 2D clusters. Furthermore, more charge is transferred from the substrate to Au and the polarization of electrons is stronger. In addition, the diffusion of Au on TiC(001) surface containing carbon vacancies is more difficult. The above affects can be helpful for improving the chemical activation of Au/TiC surfaces. Therefore, introducing carbon vacancies in the surfaces should be a very promising method to enhance the activation of Au/TiC systems.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700