QM-FISH analysis of the genes involved in the G1/S checkpoint signaling pathway in triple-negative breast cancer
详细信息    查看全文
  • 作者:Sheng Zhang (1) (2) (3)
    Yingbo Shao (1) (2) (3)
    Guofang Hou (1) (2) (3)
    Jingchao Bai (1) (2) (3)
    Weiping Yuan (4) (5)
    Linping Hu (4) (5)
    Tao Cheng (4) (5)
    Anders Zetterberg (6)
    Jin Zhang (1) (2) (3) (7)
  • 关键词:Triple ; negative breast cancer ; Copy number alterations ; Quantitative multi ; gene fluorescence in situ hybridization
  • 刊名:Tumor Biology
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:35
  • 期:3
  • 页码:1847-1854
  • 全文大小:955 KB
  • 参考文献:1. Ismail-Khan R, Bui MM. A review of triple-negative breast cancer. Cancer Control. 2010;17:173-.
    2. Griffiths CL, Olin JL. Triple negative breast cancer: a brief review of its characteristics and treatment options. J Pharm Pract. 2012;25:319-3. CrossRef
    3. Ishikawa T, Shimizu D, Kito A, Ota I, Sasaki T, Tanabe M, et al. Breast cancer manifested by hematologic disorders. J Thorac Dis. 2012;4:650-.
    4. Ali SA. The hedgehog pathway in breast cancer. Chin J Cancer Res. 2012;24:261-. CrossRef
    5. Woodson AH, Profato JL, Muse KI, Litton JK. Breast cancer in the young: role of the geneticist. J Thorac Dis. 2013;5 Suppl 1:S19-6.
    6. Daemen A. An update on the genomic landscape of breast cancer: new opportunity for personalized therapy? Transl Cancer Res. 2012;1:279-2.
    7. Nelson V, Rademaker A, Kaklamani V. Paradigm of polyendocrine therapy in endocrine responsive breast cancer: the role of fulvestrant. Chin Clin Oncol. 2013;2:10.
    8. Nojima H. G1 and S-phase checkpoints, chromosome instability, and cancer. Methods Mol Biol. 2004;280:3-9.
    9. Taylor BS, Barretina J, Socci ND, Decarolis P, Ladanyi M, Meyerson M, et al. Functional copy-number alterations in cancer. PLoS One. 2008;3:e3179. CrossRef
    10. Lu Y, Zhang X, Zhang J. Inhibition of breast tumor cell growth by ectopic expression of p16/INK4A via combined effects of cell cycle arrest, senescence and apoptotic induction, and angiogenesis inhibition. J Cancer. 2012;3:333-4. CrossRef
    11. Dirks PB, Rutka JT, Hubbard SL, Mondal S, Hamel PA. The E2F-family proteins induce distinct cell cycle regulatory factors in p16-arrested, U343 astrocytoma cells. Oncogene. 1998;17:867-6. CrossRef
    12. Diccianni MB, Omura-Minamisawa M, Batova A, Le T, Bridgeman L, Yu AL. Frequent deregulation of p16 and the p16/G1 cell cycle-regulatory pathway in neuroblastoma. Int J Cancer. 1999;80:145-4. CrossRef
    13. Kovar H, Jug G, Aryee DN, Zoubek A, Ambros P, Gruber B, et al. Among genes involved in the RB dependent cell cycle regulatory cascade, the p16 tumor suppressor gene is frequently lost in the Ewing family of tumors. Oncogene. 1997;15:2225-2. CrossRef
    14. Thangavel C, Dean JL, Ertel A, Knudsen KE, Aldaz CM, Witkiewicz AK, et al. Therapeutically activating RB: reestablishing cell cycle control in endocrine therapy-resistant breast cancer. Endocr Relat Cancer. 2011;18:333-5. CrossRef
    15. Ewen ME. Regulation of the cell cycle by the Rb tumor suppressor family. Results Probl Cell Differ. 1998;22:149-9. CrossRef
    16. Chen CY, Oliner JD, Zhan Q, Fornace Jr AJ, Vogelstein B, Kastan MB. Interactions between p53 and MDM2 in a mammalian cell cycle checkpoint pathway. Proc Natl Acad Sci U S A. 1994;91:2684-. CrossRef
    17. Shangary S, Ding K, Qiu S, Nikolovska-Coleska Z, Bauer JA, Liu M, et al. Reactivation of p53 by a specific MDM2 antagonist (MI-43) leads to p21-mediated cell cycle arrest and selective cell death in colon cancer. Mol Cancer Ther. 2008;7:1533-2. CrossRef
    18. Joensuu K, Hagstrom J, Leidenius M, Haglund C, Andersson LC, Sariola H, et al. Bmi-1, c-myc, and Snail expression in primary breast cancers and their metastases—elevated Bmi-1 expression in late breast cancer relapses. Virchows Arch. 2011;459:31-. CrossRef
    19. Wang H, Mannava S, Grachtchouk V, Zhuang D, Soengas MS, Gudkov AV, et al. c-Myc depletion inhibits proliferation of human tumor cells at various stages of the cell cycle. Oncogene. 2008;27:1905-5. CrossRef
    20. McIntosh GG, Anderson JJ, Milton I, Steward M, Parr AH, Thomas MD, et al. Determination of the prognostic value of cyclin D1 overexpression in breast cancer. Oncogene. 1995;11:885-1.
    21. Tobin NP, Sims AH, Lundgren KL, Lehn S, Landberg G. Cyclin D1, Id1 and EMT in breast cancer. BMC Cancer. 2011;11:417. CrossRef
    22. Lehn S, Tobin NP, Berglund P, Nilsson K, Sims AH, Jirstrom K, et al. Down-regulation of the oncogene cyclin D1 increases migratory capacity in breast cancer and is linked to unfavorable prognostic features. Am J Pathol. 2010;177:2886-7. CrossRef
    23. Reis-Filho JS, Savage K, Lambros MB, James M, Steele D, Jones RL, et al. Cyclin D1 protein overexpression and CCND1 amplification in breast carcinomas: an immunohistochemical and chromogenic in situ hybridisation analysis. Mod Pathol. 2006;19:999-009. CrossRef
    24. Lebeau A, Unholzer A, Amann G, Kronawitter M, Bauerfeind I, Sendelhofert A, et al. EGFR, HER-2/neu, cyclin D1, p21 and p53 in correlation to cell proliferation and steroid hormone receptor status in ductal carcinoma in situ of the breast. Breast Cancer Res Treat. 2003;79:187-8. CrossRef
    25. Lundgren K, Brown M, Pineda S, Cuzick J, Salter J, Zabaglo L, et al. Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study. Breast Cancer Res. 2012;14:R57. CrossRef
    26. Al-Kuraya K, Schraml P, Torhorst J, Tapia C, Zaharieva B, Novotny H, et al. Prognostic relevance of gene amplifications and coamplifications in breast cancer. Cancer Res. 2004;64:8534-0. CrossRef
    27. Choschzick M, Heilenkotter U, Lebeau A, Jaenicke F, Terracciano L, Bokemeyer C, et al. MDM2 amplification is an independent prognostic feature of node-negative, estrogen receptor-positive early-stage breast cancer. Cancer Biomark. 2010;8:53-0.
    28. Somlo G, Chu P, Frankel P, Ye W, Groshen S, Doroshow JH, et al. Molecular profiling including epidermal growth factor receptor and p21 expression in high-risk breast cancer patients as indicators of outcome. Ann Oncol. 2008;19:1853-. CrossRef
    29. Hui R, Macmillan RD, Kenny FS, Musgrove EA, Blamey RW, Nicholson RI, et al. INK4a gene expression and methylation in primary breast cancer: overexpression of p16INK4a messenger RNA is a marker of poor prognosis. Clin Cancer Res. 2000;6:2777-7.
    30. Chano T, Ikebuchi K, Tomita Y, Jin Y, Inaji H, Ishitobi M, et al. RB1CC1 together with RB1 and p53 predicts long-term survival in Japanese breast cancer patients. PLoS One. 2010;5:e15737. CrossRef
  • 作者单位:Sheng Zhang (1) (2) (3)
    Yingbo Shao (1) (2) (3)
    Guofang Hou (1) (2) (3)
    Jingchao Bai (1) (2) (3)
    Weiping Yuan (4) (5)
    Linping Hu (4) (5)
    Tao Cheng (4) (5)
    Anders Zetterberg (6)
    Jin Zhang (1) (2) (3) (7)

    1. 3rd Department of Breast Cancer, China Tianjin Breast Cancer Prevention, Treatment and Research center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People’s Republic of China
    2. Key Laboratory of Breast Cancer Prevention and Therapy of Ministry of Education, Tianjin, People’s Republic of China
    3. Key Laboratory of Cancer Prevention and Therapy, Tianjin, People’s Republic of China
    4. Beijing Union Medical College Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences, Tianjin, People’s Republic of China
    5. The State Key Laboratory of Experimental Hematology, Tianjin, People’s Republic of China
    6. Clinical Pathology Department of the Karolinska Hospital, Karolinska Institute, Solna, Sweden
    7. 3rd Department of Breast Cancer, Tianjin Medical University Cancer Hospital, West Beihuanhu Rd, Tianjin, 300060, People’s Republic of China
  • ISSN:1423-0380
文摘
This study was conducted to analyze copy number alterations (CNAs) of the genes involved in the G1/S checkpoint signaling pathway of triple-negative breast cancer (TNBC) and to evaluate their clinical value in the prognosis of TNBC. Quantitative multi-gene fluorescence in situ hybridization was used to study CNAs of the genes involved in the G1/S checkpoint signaling pathway, including cyclin d1 (CCND1), c-Myc, p21, cell-cycle-checkpoint kinase 2 gene, p16, retinoblastoma (Rb1), murine double minute 2 (Mdm2) and p53, in 60 TNBC samples and 60 non-TNBC samples. In comparison with the non-TNBC samples, CNAs of the genes involved in the G1/S checkpoint signaling pathway were more frequently observed in the TNBC samples (p--.000). Out of a total of eight genes, six (CCND1, c-Myc, p16, Rb1, Mdm2, and p53) exhibited significantly different CNAs between the TNBC group and the non-TNBC group. Univariate survival analysis revealed that the gene amplification of c-Myc (p--.008), Mdm2 (p--.020) and the gene deletion of p21 (p--.004), p16 (p--.015), and Rb1 (p--.028) were the independent predictive factor of 5-year OS for patients with TNBC. Cox multivariate analysis revealed that the gene amplification of c-Myc (p--.026) and the gene deletion of p21 (p--.019) and p16 (p--.034) were independent prognostic factors affecting the 5-year OS for TNBC. CNAs of the genes involved in the G1/S checkpoint signaling pathway presented a higher rate of incidence in TNBC than in non-TNBC, which could indicate one of the molecular mechanisms for the specific biological characteristics of TNBC. The genes c-Myc, p21, and p16 were correlated with the prognosis of TNBC and therefore may have potential clinical application values in the prognostic prediction of TNBC.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700