Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporous composites
详细信息    查看全文
  • 作者:Huining He (11306) (41306) (51306)
    Junxiao Ye (11306)
    Jianyong Sheng (21306)
    Jianxin Wang (21306)
    Yongzhuo Huang (21306) (31306)
    Guanyi Chen (41306)
    Jingkang Wang (11306)
    Victor C. Yang (51306) (61306)
  • 关键词:insulin ; cell penetrating peptide ; mucoadhesive composites ; oral delivery
  • 刊名:Frontiers of Chemical Science and Engineering
  • 出版年:2013
  • 出版时间:March 2013
  • 年:2013
  • 卷:7
  • 期:1
  • 页码:9-19
  • 全文大小:553KB
  • 参考文献:1. Capaldi B. Treatments and devices for future diabetes management. Nursing Times, 2005, 101(18): 30-2
    2. Cobble M E. Initiating and intensifying insulin therapy for type 2 diabetes: why, when, and how. American Journal of Therapeutics, 2009, 16(1): 56-4 CrossRef
    3. Prevention Cf DCa. National diabetes fact sheet general information and national estimates on diabetes in the United States. Centers for Disease Control and Prevention, 2003
    4. Heinemann L. New ways of insulin delivery. International Journal of Clinical Practice. Supplement, 2011, 65(170): 31-6 CrossRef
    5. Gordon Still J. Development of oral insulin: progress and current status. Diabetes/Metabolism Research and Reviews, 2002, 18(S1): S29–S37 CrossRef
    6. Heinemann L. New ways of insulin delivery. International Journal of Clinical Practice. Supplement, 2010, 64: 29-0 CrossRef
    7. Reis C P, Damge C. Nanotechnology as a promising strategy for alternative routes of insulin delivery. Methods in Enzymology, 2012, 508: 271-94 CrossRef
    8. Fonte P, Andrade F, Araujo F, Andrade C, Neves J, Sarmento B. Chitosan-coated solid lipid nanoparticles for insulin delivery. Methods in Enzymology, 2012, 508: 295-14 CrossRef
    9. Card J W, Magnuson B A. A review of the efficacy and safety of nanoparticle-based oral insulin delivery systems. American Journal of Physiology. Gastrointestinal and Liver Physiology, 2011, 301(6): G956–G967 CrossRef
    10. He P, Tang Z, Lin L, Deng M, Pang X, Zhuang X, Chen X. Novel biodegradable and pH-sensitive poly(ester amide) microspheres for oral insulin delivery. Macromolecular Bioscience, 2012, 12(4): 547-56 CrossRef
    11. Cefalu W T. Concept, strategies, and feasibility of noninvasive insulin delivery. Diabetes Care, 2004, 27(1): 239-46 CrossRef
    12. Krishnankutty R K, Mathew A, Sedimbi S K, Suryanarayan S, Sanjeevi C B. Alternative routes of insulin delivery. Zhong Nan Da Xue Xue Bao. Yi Xue Ban, 2009, 34(10): 933-48
    13. Bellary S, Barnett A H. Inhaled insulin: new technology, new possibilities. International Journal of Clinical Practice, 2006, 60(6): 728-34 CrossRef
    14. Cefalu W T. Evolving strategies for insulin delivery and therapy. Drugs, 2004, 64(11): 1149-161 CrossRef
    15. Sajeesh S, Bouchemal K, Marsaud V, Vauthier C, Sharma C P. Cyclodextrin complexed insulin encapsulated hydrogel microparticles: An oral delivery system for insulin. Journal of Controlled Release, 2010, 147(3): 377-84 CrossRef
    16. Yadav N, Morris G, Harding S E, Ang S, Adams G G. Various non-injectable delivery systems for the treatment of diabetes mellitus. Endocrine, Metabolic & Immune Disorders Drug Targets, 2009, 9(1): 1-3 CrossRef
    17. Banting F G, Best C H, Collip J B, Campbell W R, Fletcher A A. Pancreatic extracts in the treatment of diabetes mellitus. Canadian Medical Association Journal, 1922, 12(3): 141-46
    18. Del Curto M D, Maroni A, Palugan L, Zema L, Gazzaniga A, Sangalli M E. Oral delivery system for two-pulse colonic release of protein drugs and protease inhibitor/absorption enhancer compounds. Journal of Pharmaceutical Sciences, 2011, 100(8): 3251-259 CrossRef
    19. Jelvehgari M, Milani P Z, Siahi-Shadbad M R, Monajjemzadeh F, Nokhodchi A, Azari Z, Valizadeh H. In vitro and in vivo evaluation of insulin microspheres containing protease inhibitor. Arzneimittel-Forschung, 2011, 61(1): 14-2 CrossRef
    20. Su F Y, Lin K J, Sonaje K, Wey S P, Yen T C, Ho Y C, Panda N, Chuang E Y, Maiti B, Sung HW. Protease inhibition and absorption enhancement by functional nanoparticles for effective oral insulin delivery. Biomaterials, 2012, 33(9): 2801-811 CrossRef
    21. Marschutz M K, Bernkop-Schnurch A. Oral peptide drug delivery: polymer-inhibitor conjugates protecting insulin from enzymatic degradation in vitro. Biomaterials, 2000, 21(14): 1499-507 CrossRef
    22. Saudek C D. Novel forms of insulin delivery. Endocrinology and Metabolism Clinics of North America, 1997, 26(3): 599-10 CrossRef
    23. Avadi M R, Sadeghi A M, Mohammadpour N, Abedin S, Atyabi F, Dinarvand R, Rafiee-Tehrani M. Preparation and characterization of insulin nanoparticles using chitosan and Arabic gum with ionic gelation method. Nanomedicine; Nanotechnology, Biology, and Medicine, 2010, 6(1): 58-3
    24. Cui F, He C, He M, Tang C, Yin L, Qian F, Yin C. Preparation and evaluation of chitosan-ethylenediaminetetraacetic acid hydrogel films for the mucoadhesive transbuccal delivery of insulin. Journal of Biomedical Materials Research. Part A, 2009, 89(4): 1063-071 CrossRef
    25. Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C. Preparation, characterization, and oral delivery of insulin loaded carboxylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules, 2009, 10(5): 1253-258 CrossRef
    26. Schilling R, Mitra A. Degradation of insulin by trypsin and alpha-chymotrypsin. Pharmaceutical Research, 1991, 8(6): 721-27 CrossRef
    27. Nishihata T, Rytting J H, Kamada A, Higuchi T. Enhanced intestinal absorption of insulin in rats in the presence of sodium 5-methoxysalicylate. Diabetes, 1981, 30(12): 1065-067 CrossRef
    28. Cui C Y, Lu W L, Xiao L, Zhang S Q, Huang Y B, Li S L, Zhang R J, Wang G L, Zhang X, Zhang Q. Sublingual delivery of insulin: effects of enhancers on the mucosal lipid fluidity and protein conformation, transport, and in vivo hypoglycemic activity. Biological & Pharmaceutical Bulletin, 2005, 28(12): 2279-288 CrossRef
    29. Muranishi S. Delivery system design for improvement of intestinal absorption of peptide drugs. Yakugaku Zasshi, 1997, 117(7): 394-14
    30. Chung S W, Hil-lal T A, Byun Y. Strategies for non-invasive delivery of biologics. Journal of Drug Targeting, 2012, 20(6): 481-01 CrossRef
    31. Schwarze S R, Ho A, Vocero-Akbani A, Dowdy S F. In vivo protein transduction: delivery of a biologically active protein into the mouse. Science, 1999, 285(5433): 1569-572 CrossRef
    32. Schwarze S R, Dowdy S F. In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA. Trends in Pharmacological Sciences, 2000, 21(2): 45-8 CrossRef
    33. Cooper I, Sasson K, Teichberg V I, Schnaider-Beeri M, Fridkin M, Shechter Y. Peptide derived from HIV-1 TAT protein, destabilizes a monolayer of endothelial cells in an in vitro model of the bloodbrain barrier, and allows permeation of high molecular weight proteins. Journal of Biological Chemistry, 2012, 287(53): 44676-4678 CrossRef
    34. Yu R, Zeng Z, Guo X, Zhang H, Liu X, Ding Y, Chen J. The TAT peptide endows PACAP with an enhanced ability to traverse biobarriers. Neuroscience Letters, 2012, 527(1): 1- CrossRef
    35. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell, 1997, 88(2): 223-33 CrossRef
    36. Min S H, Kim D M, Kim M N, Ge J, Lee D C, Park I Y, Park K C, Hwang J S, Cho CW, Yeom Y I. Gene delivery using a derivative of the protein transduction domain peptide, K-Antp. Biomaterials, 2010, 31(7): 1858-864 CrossRef
    37. Derossi D, Joliot A H, Chassaing G, Prochiantz A. The third helix of the antennapedia homeodomain translocates through biological membranes. Journal of Biological Chemistry, 1994, 269(14): 10444-0450
    38. Jin G S, Zhu G D, Zhao Z G, Liu F S. VP22 enhances the expression of glucocerebrosidase in human Gaucher II fibroblast cells mediated by lentiviral vectors. Clinical and Experimental Medicine, 2012, 12(3): 135-43 CrossRef
    39. Tanaka M, Kato A, Satoh Y, Ide T, Sagou K, Kimura K, Hasegawa H, Kawaguchi Y. Herpes simplex virus 1 VP22 regulates translocation of multiple viral and cellular proteins and promotes neurovirulence. Journal of Virology, 2012, 86(9): 5264-277 CrossRef
    40. Chang L C, Lee H F, Yang Z, Yang V. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (I): preparation and characterization. AAPS PharmSci, 2001, 3(3): 7-4 CrossRef
    41. Chang L C, Liang J, Lee H F, Lee L, Yang V. Low molecular weight protamine (LMWP) as nontoxic heparin/low molecular weight heparin antidote (II): in vitro evaluation of efficacy and toxicity. AAPS PharmSci, 2001, 3(3): 15-3 CrossRef
    42. Chang L C, Wrobleski S, Wakefield T, Lee L, Yang V. Low molecular weight protamine as nontoxic heparin/low molecular weight heparin antidote (III): preliminary in vivo evaluation of efficacy and toxicity using a canine model. AAPS PharmSci, 2001, 3(3): 24-1 CrossRef
    43. Park Y J, Chang L C, Liang J F, Moon C, Chung C P, Yang V C. Nontoxic membrane translocation peptide from protamine, low molecular weight protamine (LMWP), for enhanced intracellular protein delivery: in vitro and in vivo study. FASEB Journal, 2005, 19(11): 1555-557
    44. Xia H, Gao X, Gu G, Liu Z, Zeng N, Hu Q, Song Q, Yao L, Pang Z, Jiang X, Chen J, Chen H. Low molecular weight protamine-functionalized nanoparticles for drug delivery to the brain after intranasal administration. Biomaterials, 2011, 32(36): 9888-898 CrossRef
    45. Ramadas MWP, Dileep K J, Ramadas M, Anitha Y, Sharma C P, 0. Lipoinsulin encapsulated alginate-chitosan capsules: intestinal delivery in diabetic rats. Journal of Microencapsulation, 2000, 17(4): 405-11 CrossRef
    46. Kimura T, Sato K, Sugimoto K, Tao R, Murakami T, Kurosaki Y, Nakayama T. Oral administration of insulin as poly(vinyl alcohol)-gel spheres in diabetic rats. Biological & Pharmaceutical Bulletin, 1996, 19(6): 897-00 CrossRef
    47. Mitchell D J, Steinman L, Kim D T, Fathman C G, Rothbard J B. Polyarginine enters cells more efficiently than other polycationic homopolymers. Journal of Peptide Research, 2000, 56(5): 318-25 CrossRef
    48. Futaki S, Nakase I, Suzuki T, Zhang, Sugiura Y. Translocation of branched-chain arginine peptides through cell membranes: flexibility in the spatial disposition of positive charges in membrane-permeable peptides. Biochemistry, 2002, 41(25): 7925-930 CrossRef
    49. Wong T W. Chitosan and its use in design of insulin delivery system. Recent Patents on Drug Delivery & Formulation, 2009, 3(1): 8-5 CrossRef
    50. Damge C, Maincent P, Ubrich N. Oral delivery of insulin associated to polymeric nanoparticles in diabetic rats. Journal of Controlled Release, 2007, 117(2): 163-70 CrossRef
    51. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharmaceutical Research, 2007, 24(12): 2198-206 CrossRef
    52. Liang J F, Zhen L, Chang L C, Yang V C. A less toxic heparin antagonist-low molecular weight protamine. Biochemistry. Biokhimiia, 2003, 68(1): 116-20 CrossRef
    53. Tsui B, Singh V K, Liang J F, Yang V C. Reduced reactivity towards anti-protamine antibodies of a low molecular weight protamine analogue. Thrombosis Research, 2001, 101(5): 417-20 CrossRef
    54. Carlsson J, Drevin H, Axén R. Protein thiolation and reversible protein-protein conjugation. / N-Succinimidyl 3-(2-pyridyldithio)propionate, a new heterobifunctional reagent. Biochemical Journal, 1978, 173(3): 723-37
    55. Chickering D E, Mathiowitz E. Bioadhesive microspheres I. A novel electrobalance-based method to study adhesive interactions between individual microspheres and intestinal mucosa. Journal of Controlled Release, 1995, 34(3): 251-62
    56. Sudhakar Y, Kuotsu K, Bandyopadhyay A K. Buccal bioadhesive drug delivery-a promising option for orally less efficient drugs. Journal of Controlled Release, 2006, 114(1): 15-0 CrossRef
  • 作者单位:Huining He (11306) (41306) (51306)
    Junxiao Ye (11306)
    Jianyong Sheng (21306)
    Jianxin Wang (21306)
    Yongzhuo Huang (21306) (31306)
    Guanyi Chen (41306)
    Jingkang Wang (11306)
    Victor C. Yang (51306) (61306)

    11306. School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
    41306. School of Environmental Science and Engineering, State Key Laboratory of Engines Tianjin University, Tianjin, 300072, China
    51306. Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
    21306. Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education & PLA, Shanghai, 201203, China
    31306. Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
    61306. Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Michigan, 48109-1065, USA
  • ISSN:2095-0187
文摘
Oral insulin delivery has received the most attention in insulin formulations due to its high patient compliance and, more importantly, to its potential to mimic the physiologic insulin secretion seen in non-diabetic individuals. However, oral insulin delivery has two major limitations: the enzymatic barrier that leads to rapid insulin degradation, and the mucosal barrier that limits insulin’s bioavailability. Several approaches have been actively pursued to circumvent the enzyme barrier, with some of them receiving promising results. Yet, thus far there has been no major success in overcoming the mucosal barrier, which is the main cause in undercutting insulin’s oral bioavailability. In this review of our group’s research, an innovative silica-based, mucoadhesive oral insulin formulation with encapsulated-insulin/cell penetrating peptide (CPP) to overcome both enzyme and mucosal barriers is discussed, and the preliminary and convincing results to confirm the plausibility of this oral insulin delivery system are reviewed. In vitro studies demonstrated that the CPPinsulin conjugates could facilitate cellular uptake of insulin while keeping insulin’s biologic functions intact. It was also confirmed that low molecular weight protamine (LMWP) behaves like a CPP peptide, with a cell translocation potency equivalent to that of the widely studied TAT. The mucoadhesive properties of the produced silica-chitosan composites could be controlled by varying both the pH and composition; the composite consisting of chitosan (25 wt-%) and silica (75 wt-%) exhibited the greatest mucoadhesion at gastric pH. Furthermore, drug release from the composite network could also be regulated by altering the chitosan content. Overall, the universal applicability of those technologies could lead to development of a generic platform for oral delivery of many other bioactive compounds, especially for peptide or protein drugs which inevitably encounter the poor bioavailability issues.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700