Experimental and modeling studies on the sorption breakthrough behaviors of butanol from aqueous solution in a fixed-bed of KA-I resin
详细信息    查看全文
  • 作者:Xiaoqing Lin (1549) (2549) (3549)
    Renjie Li (1549) (2549)
    Qingshi Wen (1549) (2549)
    Jinglan Wu (2549) (3549)
    Jiansheng Fan (1549) (2549)
    Xiaohong Jin (2549) (3549)
    Wenbin Qian (1549) (2549)
    Dong Liu (1549) (2549)
    Xiaochun Chen (2549) (3549)
    Yong Chen (1549) (3549)
    Jingjing Xie (1549) (3549)
    Jianxin Bai (1549) (3549)
    Hanjie Ying (1549) (2549) (3549)
  • 关键词:acetone ; butanol ; ethanol (ABE) ; breakthrough curve ; fixed ; bed column ; models ; resin ; sorption
  • 刊名:Biotechnology and Bioprocess Engineering
  • 出版年:2013
  • 出版时间:April 2013
  • 年:2013
  • 卷:18
  • 期:2
  • 页码:223-233
  • 全文大小:662KB
  • 参考文献:1. Lin, Y. L. and H. P. Blaschek (1983) Butanol production by a butanol-tolerant strain of / Clostridium acetobutylicum in extruded corn broth. / Appl. Environ. Microb. 45: 966鈥?73.
    2. Yan, Y. and J. C. Liao (2009) Engineering metabolic systems for production of advanced fuels. / J. Ind. Microbiol. Biot. 36: 471鈥?79. CrossRef
    3. Antoni, D., V. V. Zverlov, and W. H. Schwarz (2007) Biofuels from microbes. / Appl. Microbiol. Biotechnol. 77: 23鈥?5. CrossRef
    4. EPA (United States Environmental Protection Agency) / Chemical Summary for n-butanol. Office of Health and Environmental Assessment, Cincinnati. http://epa.gov/chemfact/sbutano.txt.
    5. Garc铆a, M., M. T. Sanz, and S. Beltr谩n (2009) Separation by pervaporation of ethanol from aqueous solutions and effect of other components present in fermentation broths. / J. Chem. Technol. Biotechnol. 84: 1873鈥?882. CrossRef
    6. Atsumi, S., T. Hanai, and J. C. Liao (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. / Nature 451: 86鈥?9. CrossRef
    7. Jones, D. T. and D. R. Woods (1986) Acetone-butanol fermentation revisited. / Microbiol. Rev. 50: 484鈥?24.
    8. Mariano, A. P., N. Qureshi, R. M. Filho, and T. C. Ezeji (2011) Bioproduction of butanol in bioreactors: New insights from simultaneous in situ butanol recovery to eliminate product toxicity. / Biotechnol. Bioeng. 108: 1757鈥?765. CrossRef
    9. Cousin Saint Remi, J., T. R茅my, V. Van Hunskerken, S. van de Perre, T. Duerinck, M. Maes, D. De Vos, E. Gobechiya, C. E. A. Kirschhock, G. V. Baron, and J. F. M. Denayer (2011) Biobutanol Separation with the Metal-Organic Framework ZIF-8. / ChemSus-Chem. 4: 1074鈥?077. CrossRef
    10. Qureshi, N., S. Hughes, I. Maddox, and M. Cotta (2005) Energyefficient recovery of butanol from model solutions and fermentation broth by adsorption. / Bioproc. Biosyst. Eng. 27: 215鈥?22. CrossRef
    11. Fouad, E. A. and X. Feng (2009) Pervaporative separation of nbutanol from dilute aqueous solutions using silicalite-filled poly(dimethyl siloxane) membranes. / J. Membrane Sci. 339: 120鈥?25. CrossRef
    12. Kraemer, K., A. Harwardt, R. Bronneberg, and W. Marquardt (2011) Separation of butanol from acetone-butanol-ethanol fermentation by a hybrid extraction-distillation process. / Comput. Chem. Eng. 35: 949鈥?63. CrossRef
    13. Ezeji, T. C., P. M. Karcher, N. Qureshi, and H. P. Blaschek (2005) Improving performance of a gas stripping-based recovery system to remove butanol from / Clostridium beijerinckii fermentation. / Bioproc. Biosyst. Eng. 27: 207鈥?14. CrossRef
    14. Cascon, H. R., S. K. Choudhari, G. M. Nisola, E. L. Vivas, D. J. Lee, and W. J. Chung (2011) Partitioning of butanol and other fermentation broth components in phosphonium and ammoniumbased ionic liquids and their toxicity to solventogenic clostridia. / Sep. Purif. Technol. 78: 164鈥?74. CrossRef
    15. Nielsen, D. R. and K. J. Prather (2009) / In situ product recovery of n-butanol using polymeric resins. / Biotechnol. Bioeng. 102: 811鈥?21. CrossRef
    16. Yang, X., G. J. Tsai, and G. T. Tsao (1994) Enhancement of in situ adsorption on the acetone-butanol fermentation by / Clostridium acetobutylicum. / Sep. Technol. 4: 81鈥?2. CrossRef
    17. Qureshi, N. and H. P. Blaschek (1999) Butanol recovery from model solution/fermentation broth by pervaporation: Evaluation of membrane performance. / Biomass Bioenerg. 17: 175鈥?84. CrossRef
    18. Groot, W. J. and K. C. A. M. Luyben (1986) / In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. / Appl. Microbiol. Biotechnol. 25: 29鈥?1. CrossRef
    19. Milestone, N. B. and D. M. Bibby (1981) Concentration of alcohols by adsorption on silicalite. / J. Chem. Technol. Biotechnol. 31: 732鈥?36. CrossRef
    20. Oudshoorn, A., L. A. M. van der Wielen, and A. J. J. Straathof (2009) Adsorption equilibria of bio-based butanol solutions using zeolite. / Biochem. Eng. J. 48: 99鈥?03. CrossRef
    21. Saravanan, V., D. A. Waijers, M. Ziari, and M. A. Noordermeer (2010) Recovery of 1-butanol from aqueous solutions using zeolite ZSM-5 with a high Si/Al ratio; suitability of a column process for industrial applications. / Biochem. Eng. J. 49: 33鈥?9. CrossRef
    22. Lin, X., J. Wu, X. Jin, J. Fan, D. Liu, W. Qian, X. Chen, Y. Chen, J. Bai, and H. Ying (2012) Selective separation of biobutanol from acetone-butanol-ethanol fermentation broth by means of sorption methodology based on a novel macroporous resin. / Biotechnol. Progr. 28: 962鈥?72. CrossRef
    23. Lin, X., J. Wu, J. Fan, W. Qian, X. Zhou, C. Qian, X. Jin, L. Wang, J. Bai, and H. Ying (2012) Adsorption of butanol from aqueous solution onto a new type of macroporous adsorption resin: Studies of adsorption isotherms and kinetics simulation. / J. Chem. Technol. Biotechnol. 87: 924鈥?31. CrossRef
    24. Singh, T. S. and K. Pant (2006) Experimental and modelling studies on fixed bed adsorption of As (III) ions from aqueous solution. / Sep. Purif. Technol. 48: 288鈥?96. CrossRef
    25. Chern, J. M. and Y. W. Chien (2001) Adsorption isotherms of benzoic acid onto activated carbon and breakthrough curves in fixed-bed columns. / Ind. Eng. Chem. Res. 40: 3775鈥?780. CrossRef
    26. Inglezakis, V. and H. Grigoropoulou (2004) Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors. / J. Hazard. Mater. 112: 37鈥?3. CrossRef
    27. Lv, L., Y. Zhang, K. Wang, A. K. Ray, and X. Zhao (2008) Modeling of the adsorption breakthrough behaviors of Pb2+ in a fixed bed of ETS-10 adsorbent. / J. Colloid. Interf. Sci. 325: 57鈥?3. CrossRef
    28. Lopes, C. B., E. Pereira, Z. Lin, P. Pato, M. Otero, C. M. Silva, J. Rocha, and A. C. Duarte (2011) Fixed-bed removal of Hg2+ from contaminated water by microporous titanosilicate ETS-4: Experimental and theoretical breakthrough curves. / Micropor. Mesopor. Mat. 145: 32鈥?0. CrossRef
    29. Paul Chen, J., J. T. Yoon, and S. Yiacoumi (2003) Effects of chemical and physical properties of influent on copper sorption onto activated carbon fixed-bed columns. / Carbon. 41: 1635鈥?644. CrossRef
    30. Chen, J. P. and L. Wang (2004) Characterization of metal adsorption kinetic properties in batch and fixed-bed reactors. / Chemosphere 54: 397鈥?04. CrossRef
    31. Ko, D. C. K., J. F. Porter, and G. McKay (2000) Optimised correlations for the fixed-bed adsorption of metal ions on bone char. / Chem. Eng. Sci. 55: 5819鈥?829. CrossRef
    32. Aksu, Z. and F. G枚nen (2004) Biosorption of phenol by immobilized activated sludge in a continuous packed bed: Prediction of breakthrough curves. / Proc. Biochem. 39: 599鈥?13. CrossRef
    33. Langmuir, I. (1916) The constitution and fundamental properties of solids and liquids. / part i. solids. J. Am. Chem. Soc. 38: 2221鈥?295. CrossRef
    34. Yin, C. Y., M. K. Aroua, and W. M. A. W. Daud (2009) Fixedbed adsorption of metal ions from aqueous solution on polyethyleneimine-impregnated palm shell activated carbon. / Chem. Eng. J. 148: 8鈥?4. CrossRef
    35. Thomas, H. C. (1944) Heterogeneous ion exchange in a flowing system. / J. Am. Chem. Soc. 66: 1664鈥?666. CrossRef
    36. Malkoc, E., Y. Nuhoglu, and Y. Abali (2006) Cr(VI) adsorption by waste acorn of Quercus ithaburensis in fixed beds: Prediction of breakthrough curves. / Chem. Eng. J. 119: 61鈥?8. CrossRef
    37. Yoon, Y. H. and J. H. Nelson (1984) Application of gas adsorption kinetics. / I: A theoretical model for respirator cartridge service life. Am. Ind. Hyg. Assoc. J. 45: 509鈥?16. CrossRef
    38. Bohart, G. and E. Adams (1920) Some aspects of the behavior of charcoal with respect to chlorine. / J. Am. Chem. Soc. 42: 523鈥?44. CrossRef
    39. Pan, B., F. Meng, X. Chen, B. Pan, X. Li, W. Zhang, X. Zhang, J. Chen, Q. Zhang, and Y. Sun (2005) Application of an effective method in predicting breakthrough curves of fixed-bed adsorption onto resin adsorbent. / J. Hazard. Mater. 124: 74鈥?0. CrossRef
    40. Juang, R. S. and J. Y. Shiau (1999) Adsorption isotherms of phenols from water onto macroreticular resins. / J. Hazard. Mater. 70: 171鈥?83. CrossRef
  • 作者单位:Xiaoqing Lin (1549) (2549) (3549)
    Renjie Li (1549) (2549)
    Qingshi Wen (1549) (2549)
    Jinglan Wu (2549) (3549)
    Jiansheng Fan (1549) (2549)
    Xiaohong Jin (2549) (3549)
    Wenbin Qian (1549) (2549)
    Dong Liu (1549) (2549)
    Xiaochun Chen (2549) (3549)
    Yong Chen (1549) (3549)
    Jingjing Xie (1549) (3549)
    Jianxin Bai (1549) (3549)
    Hanjie Ying (1549) (2549) (3549)

    1549. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing, China
    2549. College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology, Nanjing, China
    3549. National Engineering Technique Research Center for Biotechnology, Nanjing, China
  • ISSN:1976-3816
文摘
Removal of biobutanol from acetone-butanolethanol (ABE) fermentation broth can be achieved by fixed-bed sorption by means of KA-I resin, and the relevant breakthrough curves would provide much valuable information to help design a continuous fixed-bed sorption process in field application. In the present study, the effects of several important design parameters, i.e., initial butanol concentration (C f: 3.0 鈭?30.0 g/L), inlet flow rate (Q f: 0.5 鈭?5.5 mL/min) and adsorbent bed height (Z: 4.2 鈭?18.0 cm), on the adsorption breakthrough curves of KA-I resin in a fixed-bed column were investigated. It was found that the amount of adsorbed butanol at breakthrough point was increased with an increase in the value of C f and Z; and with decrease in the value of Q f. However, the maximum sorption capacities of butanol at saturated point were basically unchanged. Three well-established fixed-bed adsorption models, namely Thomas, Yoon-Nelson and Adams-Bohart, were applied to predict the breakthrough curves and to determine the characteristic parameters of fixed-bed column, which are the basis for the process design at a real scale. Good agreement between the theoretical breakthrough curves and the experimental result were observed using Thomas and Yoon-Nelson models.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700