Effect of salinity on physiological characteristics, yield and quality of microtubers in vitro in potato
详细信息    查看全文
  • 作者:Zhijun Zhang (1) (2)
    Bizeng Mao (1)
    Huizhen Li (2)
    Weijun Zhou (1)
    Yasutomo Takeuchi (3)
    Koichi Yoneyama (3)
  • 关键词:Carbohydrate ; malondialdehyde (MDA) ; microtuber ; potato (Solanum tuberosum L.) ; proline ; salinity ; starch ; sugars ; vitamin C (Vc)
  • 刊名:Acta Physiologiae Plantarum
  • 出版年:2005
  • 出版时间:December 2005
  • 年:2005
  • 卷:27
  • 期:4
  • 页码:481-489
  • 全文大小:195KB
  • 参考文献:1. Anonymous 1999. (Shanghai Plant Physiology Institute of Chinese Academy of Sciences & Shanghai Plant Physiology Society). Experimental Guide of Modern Plant Physiology. Science Press, Beijing: 127-28.
    2. Augustin J., Johnson S. R., Teitzel C., Toma R. B., Shaw R. L., True R. H., Hogan J. M., Deutsch R. M. 1978. Vitamin composition of freshly harvested and stored potatoes. J. Food Sci., 43: 1566-570. CrossRef
    3. Evers D., Schmit C., Mailliet Y., Hausman J. F. 1997. Growth characteristics and biochemical changes of poplar shoots in vitro under sodium chloride stress. J. Plant Physiol., 151: 748-53.
    4. Fernie A. R., Willmitzer L., Trethewey R. N. 2002. Sucrose to starch: a transition in molecular plant physiology. Trends Plant Sci., 7: 35-1. CrossRef
    5. Heuer B., Nadler A. 1998. Physiological response of potato plants to soil salinity and water deficit. Plant Sci., 137: 43-1. CrossRef
    6. Katerji N., van Hoorn J. W., Hamdy A., Mastrorilli M. 2003. Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric. Water Manag., 62: 37-6. CrossRef
    7. Leul M., Zhou W.J. 1999. Alleviation of waterlogging damage in winter rape by uniconazole application: Effects on enzyme activity, lipid peroxidation and membrane integrity. J. Plant Growth Regul., 18: 9-4. CrossRef
    8. Levy D. 1992. The response of potatoes ( / Solanum tuberosum L.) to salinity: plant growth and tuber yields in the arid desert of Israel. Ann. Appl. Biol., 120: 547-55. CrossRef
    9. Li H. Z., Zhou W. J., Zhang Z. J., Gu H. H., Takeuchi Y., Yoneyama K. 2005. Effect of γ-irradiation on development, yield and quality of microtubers / in vitro in potato ( / Solanum tuberosum L.). Biol. Plant., in press.
    10. Lin C. C., Kao C. H. 1996. Proline accumulation is associated with inhibition of rice seedling root growth caused by NaCl. Plant Sci., 114: 121-28. CrossRef
    11. Lopez-Delgado H., Scott I. M. 1997. Induction of in vitro tuberization of potato plants by acetylsalicylic acid. J. Plant Physiol., 151: 74-8.
    12. Martinez C. A., Maestri M., Lani E. R. G. 1996. / In vitro salt tolerance and proline accumulation in Andean potato ( / Solanum spp.) differing in frost resistance. Plant Sci., 116: 177-84. CrossRef
    13. Men F. Y., Liu M. Y. 1995. Physiology of Potato. China Agriculture Press, Beijing: 317-35.
    14. Momoh E.J.J., Zhou W.J., Kristiannson B. 2002. Variation in the development of secondary dormancy in oilseed rape genotypes under conditions of stress. Weed. Res., 42: 446-55. CrossRef
    15. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant., 15: 473-97. CrossRef
    16. Nadler A., Heuer B. 1995. Effect of saline irrigation and water deficit on tuber quality, Potato Res., 38: 119-23. CrossRef
    17. Nemoto Y., Sasakuma T. 2002. Differential stress responses of early salt-stress responding genes in common wheat. Phytochem., 61: 129-33. CrossRef
    18. Nie H. Y., Huang W. K., Tang Y. Z., Fu J. Z. 1987. Vitamin and Its Analytical Methods. Shanghai Scientific and Technologic Literature Press, Shanghai: 234-36.
    19. Nowak J, Colborne D. 1989. In vitro tuberization and tuber proteins as indicators of heat stress tolerance in potato. Am. Pot. J., 66: 35-5.
    20. Patel R. M., Prasher S. O., Donnelly D., Bonnell R. B. 2001. Effect of initial soil salinity and subirrigation water salinity on potato tuber yield and size. Agric. Water Manag., 46: 231-39. CrossRef
    21. Sasikala D. P. P., Devi Prasad P. V. 1994. Salinity effects on in vitro performance of some cultivars of potato. Braz. J. Plant Physiol., 6: 1-.
    22. Sergeeva L. I., Bruijn S. M., Koot-Gronsveld E. A. M., Navratil O., Vreugdenhil D. 2000. Tuber morphology and starch accumulation are independent phenomena: Evidence from / ipt-transgenic potato lines. Physiol. Plant., 108: 435-43. CrossRef
    23. Silva J. V. B., Otoni W. C., Martinez C. A., Dias L. M., Silva M. A. P. 2001. Microtuberization of Andean potato species ( / Solanum spp.) as affected by salinity. Sci. Horti., 89: 91-01. CrossRef
    24. Smirnoff N. 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol., 3: 229-35.
    25. Struik P., Vreugdenhil D., Vaneck H. J., Bachem C. W., Visser R. G. F. 1999. Physiological and genetic control of tuber formation. Potato Res., 42: 313-31. CrossRef
    26. Veramendi J., Willmitzer L., Trethewey R. N. 1999. In vitro grown potato microtubers are a suitable system for the study of primary carbohydrate metabolism. Plant Physiol. Biochem., 37: 693-97. CrossRef
    27. Vreugdenhil D., Boogaard Y., Visser R. G. F., Bruijn S. M. 1998. Comparison of tuber and shoot formation from in vitro cultured potato explants. Plant Cell Tis. Org. Cult., 53: 197-04. CrossRef
    28. Winicov D. 1993. Gene expression in relation to salt tolerance, In: Stress-induced Gene Expression in Plants, ed. by Basra A. S. Hardwood Academic Publishers, Switzerland: 61-30.
    29. Zhang X. Z. 1992. Methodology of Crop Physiology. Agriculture Press, Beijing: 142-12.
    30. Zhang Y., Brault M., Chalavi V., Donnelly D. 1993. In vitro screening for salinity tolerant potato. In: Proc. of the 13th International Congress on Biometeorology. Calgary, Canada.
    31. Zhang Z. J., Zhou W. J., Li H. Z. 2004. The role of GA, IAA and BAP in the regulation of / in vitro shoot growth and microtuberization in potato. Acta Physiol. Plant., in press.
    32. Zhao K. F. 1993. Physiology of Salinity Resistance in Plant. China Science and Technology Press, Beijing: 52-5.
    33. Zhou W. J., Leul M. 1998. Uniconazole-induced alleviation of freezing injury in relation to change in hormonal balance, enzyme activities and lipid peroxidation in winter rape. Plant Growth Regul., 26: 41-7. CrossRef
    34. Zhou W. J., Leul M. 1999. Uniconazole-induced tolerance of rape plant to heat stress in relation to changes in hormonal levels, enzyme activities and lipid peroxidation. Plant Growth Regul., 27: 99-04. CrossRef
    35. Zhou W.J., Yoneyama K., Takeuchi Y., Iso S., Rungmekarat S., Chae S.H, Sato D., Joel D.M. 2004. / In vitro infection of host roots by differential calli of the parasitic plant / Orobanche. J. Exp. Bot., 55: 899-07. CrossRef
  • 作者单位:Zhijun Zhang (1) (2)
    Bizeng Mao (1)
    Huizhen Li (2)
    Weijun Zhou (1)
    Yasutomo Takeuchi (3)
    Koichi Yoneyama (3)

    1. College of Agriculture and Biotechnology, Zhejiang University, 310029, Hangzhou, China
    2. Department of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China
    3. Center for Research on Wild Plants, Utsunomiya University, 321-8505, Utsunomiya, Japan
文摘
In vitro microtuberization provides an adequate experimental model for the physiological and metabolic studies of tuberization and the preliminary screenings of potential potato genotypes. The effects of saline stress at 0-0 mmol concentration on in vitro tuberization of two potato cultivars were investigated in this study. With an increase in the salt concentration, the microtuberization of potato was either delayed by 5-0 days (20 and 40 mmol NaCl) or inhibited completely (80 mmol NaCl) in addition to the reduction in microtuber yields. The two potato genotypes studied showed different trends in total soluble sugars, sucrose and starch contents of microtubers under NaCl stress, while glucose and fructose levels remained unchanged. The vitamin C content in microtubers of two potato genotypes was reduced by salt stress. Salinity applied from 20 to 60 mmol progressively increased proline and malondialdehyde (MDA) levels in microtubers of both the potato cultivars. In genotype Zihuabai, NaCl at a low concentration (20 mmol) led to a significant increase in peroxidase (POD) and polyphenoloxiadase (PPO) activities, while in Jingshi-2, the PPO activity decreased progressively with an increase in NaCl concentrations. Genotype Zihuabai exhibited higher tolerance to salt stress than Jingshi-2 under in vitro conditions. These results could be used for preliminary selections of salt tolerance in potato breeding programmes.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700