Initial movement of the Karakorum Fault in western Tibet: constraints from SHRIMP U-Pb dating of zircons
详细信息    查看全文
  • 作者:HaiBing Li (1) (3)
    Franck Valli (2)
    DunYi Liu (1) (4)
    ZhiQin Xu (1)
    JingSui Yang (1)
    Nicolas Arnaud (5)
    Paul Tapponnier (3)
    Robin Lacassin (3)
    SongYong Chen (1)
    XueXiang Qi (1)
  • 关键词:ductile shear zone ; zircon SHRIMP U ; Pb dating ; Karakorum Fault ; Tibetan Plateau
  • 刊名:Chinese Science Bulletin
  • 出版年:2007
  • 出版时间:April 2007
  • 年:2007
  • 卷:52
  • 期:8
  • 页码:1089-1100
  • 全文大小:4586KB
  • 参考文献:1. Avouac J P, Tapponnier P. Kinematic model of active deformation in central Asia. Geophys Res Lett, 1993, 20(10): 895-98 CrossRef
    2. Wright T J, Parsons B, England P C, et al. InSAR observations of low slip rates on the major faults of Western Tibet. Science, 2004, 305:236-39 CrossRef
    3. Matte P, Tapponnier P, Arnaud N, et al. Tectonics of Western Tibet, between the Tarim and the Indus. Earth Planet Sci Lett, 1996, 142:311-30 CrossRef
    4. Searle M P, Weinberg R F, Dunlap W J. Transpressional tectonics along the Karakoram fault zone, northern Ladakh: constraints on Tibetan extrusion. In: Holdsworth R E, Strachan R A, Dewey J F, eds. Continental Transpressional and Transtensional Tectonics. Geol Soc London Spec Pub, 1998, 135: 307-26
    5. Murphy M A, Yin A, Kapp P, et al. Southward propagation of the Karakoram fault system, southwest Tibet: Timing and magnitude of slip. Geology, 2000, 28: 451-54 CrossRef
    6. Murphy M A, Yin A, Kapp P, et al. Structural evolution of the Gurla Mandatha detachment system, southwest Tibet: implications for the eastward extent of the Karakoram fault system. Geol Soc Am Bull, 2002, 114: 428-47 CrossRef
    7. Zhou Y, Xu R H, Yan Y H, et al. Dating of the Karakorum Strike-slip Fault. Acta Geol Sin, 2001, 75(1): 10-8
    8. Lacassin R, Valli F, Arnaud N, et al. Large-scale geometry, offset and kinematic evolution of the Karakorum fault, Tibet. Earth Planet Sci Lett, 2004, 219: 255-69 CrossRef
    9. Valli F. Décrochements lithosphériques dans l’Ouest du plateau du Tibet: Geométrie, age, décalages cumulés et vitesse de glissement long-terme sur la Faille du Karakorum. PhD thesis, Université Paris 7, 2005
    10. Phillips R J, Parrish R R, Searle M P. Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh. Earth Planet Sci Lett, 2004, 226: 305-19 CrossRef
    11. Searle M P. Geology and Tectonics of the Karakoram Mountains, Map 2538. Chichester: John Wiley and Sons, 1991
    12. Searle M P. Geological evidence against large-scale pre-Holocene offsets along the Karakoram fault: implications for the limited extrusion of the Tibetan Plateau. Tectonics, 1996, 15: 171-86 CrossRef
    13. Zhang Q S, Li B Y, Wang F B, et al. A discussion on the uplifting of the Karakorum-Kunlun mountains and its impact on environmental changes. In: Abstracts of International Symposium on the Karakorum and Kunlun Mountains. Beijing: Geological Publishing House, 1992. 95
    14. Yin J X, Bian Q T. Geological Map of the Karakorum Mountain-West Kunlun Mountain and Adjacent Areas (in Chinese). Beijing: Science Press, 1995
    15. Chevalier M L, Ryerson F J, Tapponnier P, et al. Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science, 2005, 307: 411-14 CrossRef
    16. Li Haibing, Valli F, Xu Zhiqin, et al. Deformation and tectonic evolution of the Karakorum fault, western Tibet. Geol China (in Chinese), 2006, 33(2): 239-55
    17. Gapais D. Les Orthogneiss: Structures, mécanismes de déformation et analyse cinématique. Mem Doc CAESS, 1989, 28: 1-66
    18. Leloup P H, Lacassin R, Tapponnier P, et al. The Ailao Shan-Red River shear zone (Yunnan, China), Tertiary transform boundary of Indochina. Tectonophysics, 1995, 251: 3-4 CrossRef
    19. Simpson C, Wintsch R P. Evidence for deformation-induced K-feldspar replacement by myemekite. J Metam Geol, 1989, 7:261-75 CrossRef
    20. Passchier C W, Trouw R A J. Microtectonics. Berlin: Springer-Verlag, 1996. 1-89
    21. Tsurumi J, Hosonuma H, Kanagawa K. Strain localization due to a positive feedback of deformation and myrmekite-forming reaction in granite and aplite mylonites along the Hatagawa Shear Zone of NE Japan. J Struct Geol, 2003, 25: 557-74 CrossRef
    22. Olesen N O. Plagioclase fabric development in a high-grade shear zone, Jotunheimen, Norway. Tectonophysics, 1987, 142: 291-08 CrossRef
    23. Gower J W, Simpson C. Phase boundary mobility in naturally deformed, highgrade quartzofeldspathic rocks: evidence for diffusional creep. J Struct Geol, 1992, 14(3): 301-13 CrossRef
    24. Leloup P H, Arnaud N, Lacassin R, et al. New constraints on the structure, thermochronology and timing of the Ailao Shan-Red River shear zone. J Geophys Res, 2001, 106(B4): 6657-671 CrossRef
    25. Song B, Zhang Y H, Wan Y S, et al. Mount making and procedure of the SHRIMP dating. Geol Rev (in Chinese), 2002, 48(suppl): 26-0
    26. Hanchar J M, Rudnick R L. Revealing hidden structures: The application of cathodoluminescence and back-scattered electron imaging to dating zircons from lower crust xenoliths. Lithos, 1995, 36: 289-03 CrossRef
    27. Rubatto D, Gebauer D. Use of cathodoluminescence for U-Pb zircon dating by ion microprobe (SHRIMP): some examples from high-pressure rocks of the Western Alps. In: Pagel M, Barbin V, Blanc P, et al, eds. Cathodoluminescence in Geosciences. Berlin: Springer-Verlag, 1998. 373-00
    28. Gebauer D. A P-T-t-path for an (ultra?-) high-pressure ultramafic/mafic rock-association and its felsic country-rocks based on SHRIMP-dating of magmatic and metamorphic zircon domains; example: Alpe Arami (Central Swiss Alps). Am Geophys Union, 1996, 309-28
    29. Vavra G, Gebauer D, Schmid R, et al. Multiple zircon growth and recrystallization during polyphase Late Carboniferous to Triassic metamorphism in granulites of the Ivrea Zone (Southern Alps): An ion microprobe (SRHIMP) study. Contrib Mineral Petrol, 1996, 122:337-58 CrossRef
    30. Cherniak D J, Watson E B. Diffusion in Zircon. In: Hanchar J M, Hoskin P W O, eds. Zircon, Mineral Soc Am, 2003, 53: 113-43
    31. Lee J, Williams I, Ellis D J. Pb, U and Th diffusion in natural zircon. Nature, 1997, 390: 159-63 CrossRef
    32. Fraser J E, Searle M P, Parrish R R, et al. Chronology of deformation, metamorphism, and magmatism in the southern Karakoram mountains. Geol Soc Am Bull, 2001, 113(11): 1443-455 CrossRef
    33. Weinberg R F, Searle M P. The Pangong Injection Complex, Indian Karakoram: A case of pervasive granite flow through hot viscous crust. J Geol Soc London, 1998, 155: 883-91 CrossRef
    34. Parrish R R, Tirrul R. U-Pb age of the Baltoro granite, northwest Himalaya, and implications for monazite U-Pb systematics. Geology, 1989, 17: 1076-079 CrossRef
    35. Sch?rer U, Harrison T M, Searle M P. Age, cooling history and origin of postcollisional leucogranites in the Karakoram batholith: A multi-system isotope study N. Pakistan. J Geol, 1990, 98: 233-51 CrossRef
    36. Searle M P, Crawford M B, Rex A J. Field relations, geochemistry, origin and emplacement of the Baltoro granite, central Karakoram, Transactions of the Royal Society of Edinburgh. Earth Science, 1992, 83: 519-38
    37. Mahéo G, Pêcher A, Guillot S, et al. Exhumation of Neogene gneiss dome between two oblique crustal boundaries in south Karakorum (NW, Himalaya, Pakistan). In: Whitney D L, Teyssier C, Siddoway C S, eds. Gneiss Domes in Orogeny. Geol Soc Am Spec Pap, 2004, 380:141-54
    38. Bhutani R, Pande K, Desai N. Age of the Karakorum fault activation: 40Ar/39Ar geochronological study of Shyok suture zone in northern Ladakh, India. Curr Sci, 2003, 84: 1454-458
    39. Arnaud N. Apports de la thermochronologie 40Ar/39Ar sur feldspath potassique à la connaissance de la tectonique cénozo?que d’Asie. PhD Thesis, Université Clermont-Ferrand, 1992
  • 作者单位:HaiBing Li (1) (3)
    Franck Valli (2)
    DunYi Liu (1) (4)
    ZhiQin Xu (1)
    JingSui Yang (1)
    Nicolas Arnaud (5)
    Paul Tapponnier (3)
    Robin Lacassin (3)
    SongYong Chen (1)
    XueXiang Qi (1)

    1. Laboratory of Continental Dynamics, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
    3. Institut de Physique du Globe de Paris, 75252, Paris CX05, France
    2. Department of Earth Science, Hongkong University, Hongkong, China
    4. Beijing SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
    5. ISTEEM-USTL, Place Eugene Bataillon, 34095, Montpellier CX5, France
  • ISSN:1861-9541
文摘
The Karakorum Fault zone (KFZ) plays an important role in understanding the formation, evolvement and deformation of the Tibetan Plateau. The high-T dextral shearing metamorphic rocks, e.g., mylonites or mylonitized gneisses-granites, locally crop out along the southeastern part of the KFZ in the Ayila Ri’gyü Range area. The SHRIMP U-Pb dating of the syn-kinematic crystallized zircons indicates that the initial age of the KFZ is ?7 Ma, ?0 Ma older than previous results. The extensive high-T dextral shearing along the KFZ started at least at 27-0 Ma, accompanied by the syn-kinematic emplacement of leuco-granites. Deformation and concomitant fluid circulation during shearing most likely occurred as early as at 25-3 Ma. The KFZ probably grew from southeast to northwest along the fault as a result of continuous convergence between the India plate and Eurasia plate.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700