Finding of high-pressure mafic granulites in the Amdo basement, central Tibet
详细信息    查看全文
  • 作者:XiaoRan Zhang (1)
    RenDeng Shi (1)
    QiShuai Huang (1)
    DeLiang Liu (1)
    SuoLang Cidan (2)
    JingSui Yang (3)
    Lin Ding (1)
  • 关键词:high ; pressure granulite ; P ; T path ; Amdo basement ; Bangong ; Nujiang Suture ; Tibet
  • 刊名:Chinese Science Bulletin
  • 出版年:2010
  • 出版时间:November 2010
  • 年:2010
  • 卷:55
  • 期:32
  • 页码:3694-3702
  • 全文大小:952KB
  • 参考文献:1. Chang C F, Zhen X K. Tectonic features of Mount Jolmo Lungma region in southern Tibet, China (in Chinese). Sci China, 1973, 2: 1-2
    2. Pan G T, Zhu D C, Wang L Q, et al. Bangong Lake-Nu River suture zone-the northern boundary of Gondwanaland: Evidence from geology and geophysics (in Chinese). Earth Sci Front, 2004, 11: 371-82
    3. Ren J S, Xiao L W. Lifting the mysterious veil of the tectonics of the Qinghai-Tibet Plateau by 1:250000 geological mapping (in Chinese). Geol Bull Chin, 2004, 23: 1-1
    4. Li C, Cheng L R, Hu K, et al. Study on the Paleo-Tethys Suture Zone of Longmu Co-Shuanghu (in Chinese). Beijing: Geological Publishing House, 1995. 1-31
    5. Li C, Huang X P, Zhai Q G, et al. Longmu Co-Shuanghu-Jitang plate suture and the northern boundary of Gondwanaland in the Qinghai-Tibet Plateau (in Chinese). Earth Sci Front, 2006, 13: 136-47
    6. Li C, Zhai Q G, Dong Y S, et al. Discovery of eclogite and its geological significance in Qiangtang area, central Tibet. Chinese Sci Bull, 2006, 51: 1095-110 CrossRef
    7. Li C, Dong Y S, Zhai Q G, et al. Discovery of Paleozoic ophiolite in the Qiangtang of Tibet Plateau: Evidence from SHRIMP U-Pb dating and its tectonic implications (in Chinese). Acta Petrol Sin, 2008, 24: 31-6
    8. Li C, Zhai Q G, Dong Y S, et al. Oceanic crust on the northern margin of Gondwana: Evidence from Early Paleozoic ophiolite in central Qiangtang, Qinghai-Tibet Plateau (in Chinese). Geol Bull Chin, 2008, 27: 1605-612
    9. Li C, Zhai Q G, Dong Y S. High-pressure eclogite-blueschist metamorphic belt and closure of Paleo-Tethys Ocean in central Qiangtang, Qinghai-Tibet Plateau. J Earth Sci, 2009, 20: 209-18 CrossRef
    10. Lu J P, Zhang N, Huang W H, et al. Characteristics and significance of the metamorphic minerals Glaucophane-Lawsonite assemblage in the Hongjishan Area, North-Central Qiangtang, Northern Tibet, China (in Chinese). Geol Bull Chin, 2006, 25: 70-5
    11. Zhang K J, Cai J X, Zhang Y X, et al. Eclogites from central Qiangtang, northern Tibet (China) and tectonic implication. Earth Planet Sci Lett, 2006, 245: 722-29 CrossRef
    12. Pullen A, Kapp P, Gehrels G E, et al. Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology, 2008, 36: 351-54 CrossRef
    13. Girardeau J, Marcoux J, Allègre C J, et al. Tectonic environment and geodynamic significance of the Neo-Cimmerian Donqiao ophiolite, Bangong-Nujiang suture zone, Tibet. Nature, 1984, 307: 27-1 CrossRef
    14. Zhu D C, Pan G T, Mo X X, et al. Late Jurassic-Early Cretaceous geodynamic setting in middle-northern Gandese: New insights from volcanic rocks (in Chinese). Acta Petrol Sin, 2006, 22: 534-46
    15. Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic tectonic evolution of the Shiquanhe area of western Tibet. Tectonics, 2003, 22: 1029 CrossRef
    16. Zhang K J, Tang X C. Eclogites in the interior of the Tibetan Plateau and their geodynamic implications. Chinese Sci Bull, 2009, 54: 2556-567 CrossRef
    17. Xizang Bureau of Geology and Mineral Resources. Regional Geology of Xizang (in Chinese). Beijing: Geological Publishing House, 1993. 1-07
    18. Geological Survey of Qinghai Province. Report of Regional Geology of Zaduo County of Qinghai Province (1:250000) (in Chinese). 2006. 1-46
    19. O’Brien P J, R?zler J. High-pressure granulites: Formation, recovery of peak conditions and implications for tectonics. J Metamorph Geol, 2003, 21: 3-0 CrossRef
    20. Brown M. A duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 2006, 34: 961-64 CrossRef
    21. Zheng Y F, Ye K, Zhang L F. Developing plate tectonics from oceanic subduction to continental collision. Chinese Sci Bull, 2009, 54: 2549-555 CrossRef
    22. Huang J Q, Chen B W. The Evolution of the Tethys in China and Adjacent Regions (in Chinese). Beijing: Geological Publishing House, 1987. 1-8
    23. Dewey J F, Shackelton R M, Chang C, et al. The tectonic development of the Tibetan Plateau. Phil Trans R Soc Lond A, 1988, 327: 379-13 CrossRef
    24. Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan Orogen. Ann Rev Earth Planet Sci, 2000, 28: 211-80 CrossRef
    25. Xu R H, Sch?rer U, Allègre C J. Magmatism and metamorphism in the Lhasa block (Tibet): A chronological study. J Geol, 1985, 93: 41-7 CrossRef
    26. Coward M P, Kidd W S F, Yun P, et al. The structure of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A, 1988, 327: 307-36 CrossRef
    27. Guynn J H, Kapp P, Pullen A, et al. Tibetan basement rocks near Amdo reveal “missing-Mesozoic tectonism along the Bangong suture, central Tibet. Geology, 2006, 34: 505-08 CrossRef
    28. Bureau of Geology of Tibet Autonomous Region. The special report of regional geological survey of the People’s Republic of China. Composition and tectonic evolution of Nierong complex in northern Tibet (1:250000)-Naqu town (in Chinese). 2005
    29. Harris N B W, Holland T J B, Tindle A G. Metamorphic rocks of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A, 1988, 327: 203-13 CrossRef
    30. Kidd W S F, Pan Y S, Chang C F, et al. Geological mapping of the 1985 Chinese-British Tibetan (Xizang-Qinghai) Plateau geotraverse route. Phil Trans R Soc Lond A, 1988, 327: 287-05 CrossRef
    31. Chang C F. Characteristics of Tethys and Qinghai-Xizang collision orogenic belt. In: Xu G Z, Chang C F, eds. Tectonic of Continental Lithosphere and Resources (in Chinese). Beijing: Ocean Press, 1992. 1-8
    32. Wang H G. Tectonic Deformation and Evolution of Taniantaweng Mountains, Tibet (in Chinese). Beijing: Geological Publishing House, 1996. 1-0
    33. Shen Q H. The recommendation of a systematic list of mineral abbreviations (in Chinese). Acta Petrol Mineral, 2009, 28: 495-00
    34. O’Brien P J. Garnet zoning and reaction texture in overprinted eclogites, Bohemian Massif, European Variscides: A record of their thermal history during exhumation. Lithos, 1997, 41: 119-33 CrossRef
    35. Messiga B, Bettini E. Reactions behavior during kelyphite and symplectite formation: A case study of mafic granulites and eclogites from the Bohemian Massif. Eur J Mineral, 1990, 2: 125-44
    36. Thost D E, Hensen B J, Motoyoshi Y. Two-stage decompression in garnet-bearing mafic granulite from Sostrene Island, Prydz Bay, East Antartica. J Metamorph Geol, 1991, 9: 245-56 CrossRef
    37. Haissen F, Garcia-Casco A, Torres-Roldan R, et al. Decompression reactions and P-T conditions in high-pressure granulites from Casares-Los Reales units of the Betic-Rif belt (S Spain and N Morocco). J Afr Earth Sci, 2004, 39: 375-83 CrossRef
    38. Johansson L, M?ller C. Formation of sapphirine during retrogression of a basic high-pressure granulite, Roan, Western Gneiss Region, Norway. Contrib Mineral Petrol, 1986, 94: 29-1 CrossRef
    39. Harley S L. The origins of granulites: A metamorphic perspective. Geol Mag, 1989, 126: 215-47 CrossRef
    40. Osanai Y, Sajeev K, Owada M, et al. Metamorphic evolution of high-pressure and ultrahigh-temperature granulites from the Highland Complex, Sri Lanka. J Asian Earth Sci, 2006, 28: 20-7 CrossRef
    41. Mengel F, Rivers T. Decompressing reactions and P-T conditions in high-grade rocks. Northern Labrador. / P- / T- / t paths from individual samples and implications for Early Proterozoic tectonic evolution. J Petrol, 1991, 32: 139-67
    42. Kumar G R R, Chacko T. Geothermobarometry of mafic granulites and metapelite from the Palghat Gap, South India: Petrological evidence for isothermal uplift and rapid cooling. J Metamorph Geol, 1994, 12: 479-92 CrossRef
    43. Lu Y F. GeoKit: A geochemical toolkit for Microsoft Excel (in Chinese). Geochim, 2004, 33: 459-64
    44. Pal S, Bose S. Mineral reactions and geothermobarometry in a suite of granulite facies rocks from Paderu, Eastern Ghats granulite belt: A reappraisal of the P-T trajectory. Proc lndian Acad Sci-Earth Planet Sci, 1997, 106: 77-9
    45. Green D H, Ringwood A E. An experimental investigation of the gabbro to eclogite transformation and its petrological applications. Geochim Cosmochim Acta, 1967, 31: 767-33 CrossRef
    46. Ellis D J, Green E H. An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib Mineral Petrol, 1979, 71: 13-2 CrossRef
    47. Krogh E J. The garnet-clinopyroxene Fe-Mg geothermometer: A reinterpretation of existing experimental data. Contrib Mineral Petrol, 1988, 99: 44-8 CrossRef
    48. Newton R C, Perkins D. Thermodynamic calibration of geobarometers based on the assemblages garnet-orthopyroxene (clinopyroxene)-plagioclase-quartz. Am Mineral, 1982, 67: 203-22
    49. Lal R K. Internally consistent recalibrations of mineral equilibria for geothermobarometry involving garnet-orthopyroxene-plagioclasequartz assemblages and their application to the South Indian granulites. J Metamorph Geol, 1993, 11: 855-66 CrossRef
    50. Bhattacharya A, Krishnakumar K R, Raith M, et al. An improved set of a-X parameters for Fe-Mg-Ca garnets and refinements of the orthopyroxene-garnet thermometer and orthopyroxene-garnet-plagioclase-quartz barometer. J Petrol, 1991, 32: 629-56
    51. Kohn M J, Spear F S. Two new barometers for garnet amphibolites with applications to southeastern-Vermont. Am Mineral, 1990, 75: 89-6
    52. Holland T J B, Blundy J D. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry. Contrib Mineral Petrol, 1994, 116: 433-47 CrossRef
    53. R?zler J, Romer R L, Budzinski H, et al. Ultrahigh-temperature high-pressure granulites from Tirschheim, Saxon Granulite Massif, Germany: P-T-t path and geotectonic implications. Eur J Mineral, 2004, 16: 917-37 CrossRef
    54. Zhang Z M, Zheng L L, Wang J L, et al. Garnet pyroxenite in the Nam jagbarwa group-complex in the eastern Himalayan tectonic syntaxis, Tibet, China: Evidence for subduction of the Indian continent beneath the Eurasian plate at 80-00 km depth (in Chinese). Geol bull Chin, 2007, 26: 1-2 CrossRef
    55. Zhao G C, Cawood P A, Wilde S A, et al. High-pressure granulites (retrograded eclogites) from the Hengshan Complex, North China Craton: Petrology and tectonic implications. J Petrol, 2001, 42: 1141-170 CrossRef
    56. Li X C, Yu J H, Sang L Q, et al. Granulite facies metamorphism of the Olkhon terrane in southern Siberian Craton and tectonic significance (in Chinese). Acta Petrol Sin, 2009, 25: 3330-340
    57. R?zler J, Romer R L. P-T-t evolution of ultrahigh-temperature granulites from the Saxon Granulite Massif, Germany. Part I: Petrology. J Petrol, 2001, 42: 1995-013
    58. Spear F S. Metamorphic phase equilibria and pressure-temperature-time paths. Washington D C: Mineralogical Society of America, 1993. 393-46
    59. England C, Thompson A B. Pressure-temperature-time paths of regional metamorphism: I. Heat transfer during the evolution of regions of thickened continental crust. J Petrol, 1984, 25: 894-28
    60. Thompson A B, England C. Pressure-temperature-time paths of regional metamorphism: II. Their influences and interpretation using mineral assemblages in metamorphic rocks. J Petrol, 1984, 25: 929-55
    61. Brown M. P-T-t evolution of mountain belts and the causes of regional metamorphism. J Geol Soc Lond, 1993, 150: 227-41 CrossRef
    62. England P C, Richardson S W. The influence of erosion upon the mineral facies of rocks from different metamorphic environments. J Geol Soc Lond, 1977, 34: 3201-213
    63. Oxburgh E R. Some thermal aspects of granulite history. In: Vielzeuf D, Vidal P H, eds. Granulites and Crustal Evolution. Dordrecht: Kluwer Academic Publishers, 1989. 569-80
    64. Smith A B, Xu J T. Paleontology of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans R Soc Lond A, 1988, 327: 53-
    65. Leeder M R, Smith A B, Yin J X. Sedimentology, palaeoecology and palaeoenvironmental evolution of the 1985 Lhasa to Golmud Geotraverse. Phil Trans R Soc Lond A, 1988, 327: 107-43 CrossRef
    66. Zhou M F, Malpas J, Robinson P T. The dynamothermal aureole of the Donqiao ophiolite (northern Tibet). Can J Earth Sci, 1997, 34: 59-5 CrossRef
  • 作者单位:XiaoRan Zhang (1)
    RenDeng Shi (1)
    QiShuai Huang (1)
    DeLiang Liu (1)
    SuoLang Cidan (2)
    JingSui Yang (3)
    Lin Ding (1)

    1. Key Laboratory of Continental Collision and Plateau Uplift, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
    2. School of Sciences, Tibetan University, Lhasa, 850000, China
    3. Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
  • ISSN:1861-9541
文摘
High-pressure mafic granulites with a peak mineral assemblage of garnet + clinopyroxene + rutile + quartz were found in the Amdo basement, central Tibet. Two kinds of symplectites were identified that are composed of orthopyroxene + plagioclase ± spinel and hornblende + plagioclase around garnet, which were interpreted to develop during the retrogressing stages in the granulites. P-T estimates suggested that peak metamorphic conditions were about 860-20°C and 1.46-.56 GPa, which retrogressed from post-peak phase at 820-90°C and 0.88-.15 GPa to amphibolite facies at 550-70°C and 0.52-.65 GPa. These three stages define a clockwise P-T path with near-isothermal decompression and cooling following the peak high-pressure metamorphism. This suggests that the Amdo granulites underwent an initial subduction to a deep crustal level of ?0 km and then were rapidly exhumed to a shallow crustal level (?0 km). The formation of Amdo granulites is considered to result from the arc-continent collision between the Amdo basement and the Qiangtang terrane in the middle Jurassic, which is a crucial step to the tectonic evolution of the Tibetan Plateau.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700