SiO2 solubility in rutile at high temperature and high pressure
详细信息    查看全文
  • 作者:Yufeng Ren (1)
    Yingwei Fei (2)
    Jingsui Yang (1)
    Wenji Bai (1)
  • 关键词:rutile ; stishovite ; coesite ; polymorph ; high temperature and high pressure ; experiment
  • 刊名:Journal of Earth Science
  • 出版年:2009
  • 出版时间:April 2009
  • 年:2009
  • 卷:20
  • 期:2
  • 页码:274-283
  • 全文大小:970KB
  • 参考文献:1. Akaogi, M., Ito, E., Navrotsky, A., 1989. Olivine-Modified Spinel-Spinel Transitions in the System Mg2SiO4-Fe2SiO4: Calorimetric Measurements, Thermochemical Calculation, and Geophysical Application. / J. Geophys. Res., 94(B11): 15671-5685 CrossRef
    2. Angle, R. J., 1997. Transformation of Five Folded-Coordinated Silicon to Octahedral Silicon in Calcium Silicate, CaSi2O5. / American Mineralogist, 82: 836-39
    3. Bai, W. J., Robinson, P. T., Fang, Q. S., et al., 2000. The PGE and Base-Metal Alloys in the Podiform Chromitites of the Luobusa Ophiolite, Southern Tibet. / The Canadian Mineralogist, 38: 585-98 CrossRef
    4. Bai, W. J., Tao, S. F., Shi, R. D., et al., 2001. A New Intergrowth Consisting of FeO and SiO2 Phases from Lower Mantle. / Continental Dynamics, 6(2): 1-
    5. Bertka, C. M., Fei, Y. W., 1997. Mineralogy of the Martian Interior up to Core-Mantle Boundary Pressures. / J. Geophys. Res., 102(B3): 5251-264 CrossRef
    6. Circone, S., Agee, C. B., 1995. Effect of Pressure on Cation Partitioning between Immiscible Liquids in the System TiO2-SiO2. / Geochimica et Cosmochimica Acta, 59(5): 895-07
    7. DeVries, R. C., Roy, R., Osborn, E. F., 1954. The System TiO2-SiO2. / Transactions of the British Ceramic Society, 53(9): 525-40
    8. Dobrzhinetskaya, L., Bizgukiv, K. N., Green, H. W., 1999. The Solubility of TiO2 in Olivine: Implications for the Mantle Wedge Environment. / Chemical Geology, 160(4): 357-70 CrossRef
    9. Dubrovinskaia, N. A., Dubrovinsky, L. S., Ahuja, R., et al., 2001. Experimental and Theoretical Identification of a New High-Pressure TiO2 Polymorph. / Phys. Rev. Lett., 87(27): 275501-75504 CrossRef
    10. Endo, S., Sato, H., Tang, J., et al., 1992. High Pressure Research: Application to Earth and Planetary Sciences. In: Synon, Y., Manghnani, M. H., eds., Terra. Scientific Publishing Company, Tokyo. 457-61
    11. Fang, Q. S., Bai, W. J., 1981. The Discovery of Alpine-Type Diamond-Bearing Ultrabasic Intrusions in Tibet. / Geological Review, 27: 455-57 (in Chinese with English Abstract)
    12. Fei, Y. W., Bertka, C. M., 1999. Phase Transitions in the Earth’s Mantle and Mantle Mineralogy. / Geochemical Society Special Publication, 6: 189-07
    13. Goresy, A. E., Chen, M., Gillet, P., et al., 2001a. A Natural Shock-Induced Dense Polymorph of Rutile with α-PbO2 Structure in the Suevite from the Ries Crater in Germany. / Earth and Planetary Science Letters, 192(4): 485-95 CrossRef
    14. Goresy, A. E., Chen, M., Dubrovinsky, L., et al., 2001b. An Ultradense Polymorph of Rutile with Seven-Coordinated Titanium from the Ries Crater. / Science, 293(5534): 1467-470 CrossRef
    15. Hermann, J., O’Neill, H. S. C., Berry, A. J., 2004. Titanium Solubility in Olivine in the System TiO2-MgO-SiO2: No Evidence for an Ultra-deep Origin of Ti-Bearing Olivine. / Contributions to Mineralogy and Petrology, 148(6): 746-60 CrossRef
    16. Hwang, S. L., Shen, P. Y., Chu, H., et al., 2000. Nanometer-Size α-PbO2-Type TiO2 in Garnet: A Thermobarometer for Ultrahigh-Pressure Metamorphism. / Science, 288(5464): 321-24 CrossRef
    17. Ito, E., Takahashi, E., 1989. Post-Spinel Transformations in the System Mg2SiO4-Fe2SiO4 and Some Geophysical Implications. / J. Geophys. Res., 94(8): 10637-0646 CrossRef
    18. Jackson, J. C., Horton, J. W., Chou, I. M., et al., 2006. A Shock-Induced Polymorph of Anatase and Rutile from the Chesapeake Bay Impact Structure, Virginia, USA. / American Mineralogist, 91: 604-08 CrossRef
    19. Kaufman, L., 1988. Physica B+C. / Amsterdam, 150(1-): 99-14
    20. Knoche, R., Angel, R. J., Seifert, F., et al., 1998. Complete Substitution of Si for Ti in Titanite Ca(Ti1xSix)VISiIVO5. / American Mineralogists, 83: 1168-175
    21. Nazzareni, S., Molin, G., Skogby, H., et al., 2004. Crystal Chemistry of Ti3+-Ti4+-Bearing Synthetic Diopsides. / Eur. J. Mineral., 16: 443-49 CrossRef
    22. Ogasawara, Y., Fukasawa, K., Maruyama, S., 2002. Coesite Exsolution from Supersilicic Titanite in UHP Marble from the Kokchetav Massif, Northern Kazakhstan. / American Mineralogist, 87: 454-61
    23. Stebbins, J. F., 1992. Nuclear Magnetic Resonance Spectroscopy of Geological Materials. / MRS Bulletin, 17(5: )45-2
    24. Withers, A. C., Essene, E. J., Zhang, Y., 2003. Rutile/TiO2 II Phase Equilibria. / Contributions to Mineralogy and Petrology, 145: 199-04
    25. Yang, F. Y., Kang, Z. Q., Liu, S. C., 1981. A New Octahedral Pseudomorph of Lizardite and Its Origin. / Acta Mineralogica Sinica, 1: 52-4 (in Chinese with English Abstract)
    26. Yang, J. S., Bai, W. J., Fang, Q. S., et al., 2003. Silicon-Rutile: An Ultrahigh Pressure (UHP) Mineral from an Ophiolite. / Progress in Natural Science, 13(7): 528-31
    27. Yang, J. S., Dobrzhinetskaya, L., Bai, W. J., et al., 2007. Diamond- and Coesite-Bearing Chromitites from the Luobusa Ophiolite, Tibet. / Geology, 35(10): 875-78 CrossRef
    28. Zhang, R. Y., Zhai, S. M., Fei, Y. W., et al., 2003. Titanium Solubility in Coexisting Garnet and Clinopyroxene at very High Pressure: The Significance of Exsolved Rutile in Garnet. / Earth and Planetary Science Letters, 216(4): 519-01 CrossRef
  • 作者单位:Yufeng Ren (1)
    Yingwei Fei (2)
    Jingsui Yang (1)
    Wenji Bai (1)

    1. Key Laboratory for Continental Dynamics of the Ministry of Land and Resources, Institute of Geology, Chinese Academy of Geological Sciences, Beijing, 100037, China
    2. Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, 20015, USA
  • ISSN:1867-111X
文摘
Silicon-bearing rutile has been found in chromitite from the Luobusa ( ophiolite, Tibet. However, the extent of SiO2 solubility in rutile and the nature of its origin are still unclear. At high pressure, SiO2 takes a rutile structure with Si in 6-fold coordination. Thus, high pressures may enhance its solubility in rutile because of possible isovalent exchange in the octahedral site. In this study, we report new experimental results on SiO2 solubility in rutile up to 23 GPa and 2 000 °C. Starting materials were mixtures of powdered pure rutile and pure quartz, with compositions of (Ti0.5Si0.5)O2, (Ti0.93Si0.07)O2, and (Ti0.75Si0.25)O2. The mixtures were loaded into either platinum capsules (for a 10/5 assembly) or rhenium capsules (for an 8/3 assembly). The experiments were carried out using multi-anvil high-pressure apparatus with a rhenium resistance heater. Sample temperatures were measured with a W5%Re-W26%Re thermocouple and were controlled within ±1 °C of the set temperature. TiO2-rich and SiO2-rich phases were produced in all the quenched samples. Microprobe analyses of the phases show that the solubility of SiO2 in rutile increases with increasing pressure, from 1.5 wt.% SiO2 at 10 GPa to 3.8 wt.% SiO2 at 23 GPa at a temperature of 1 800 °C. The solubility also increases with increasing temperature from 0.5 wt.% SiO2 at 1 500° to 4.5 wt.% SiO2 at 2 000° at a pressure of 18 GPa. On the other hand, the solubility of TiO2 in coesite or stishovite is very limited, with an average of 0.6 wt.% TiO2 over the experimental P-T ranges. Temperature has a much larger effect on the solubility of SiO2 in rutile than pressure. At high pressure, the melting point of SiO2 is definitely higher than that of TiO2 and the eutectic point moves towards SiO2 in the TiO2-SiO2 system. Lower oxygen fugacity decreases the solubility of SiO2 in rutile, whereas water has little effect on the solubility. Our experimental data are extremely useful for determining the depth of origin of the SiO2-bearing rutile found in nature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700