A Novel Structure-Aware Sparse Learning Algorithm for Brain Imaging Genetics
详细信息    查看全文
  • 作者:Lei Du (20)
    Jingwen Yan (20) (21)
    Sungeun Kim (20)
    Shannon L. Risacher (20)
    Heng Huang (22)
    Mark Inlow (23)
    Jason H. Moore (24)
    Andrew J. Saykin (20)
    Li Shen (20) (21)
  • 刊名:Lecture Notes in Computer Science
  • 出版年:2014
  • 出版时间:2014
  • 年:2014
  • 卷:8675
  • 期:1
  • 页码:329-336
  • 全文大小:413 KB
  • 参考文献:1. Ashburner, J., Friston, K.J.: Voxel-based morphometry鈥搕he methods. Neuroimage聽11(6 Pt. 1), 805鈥?21 (2000) CrossRef
    2. Chen, J., Bushman, F.D., et al.: Structure-constrained sparse canonical correlation analysis with an application to microbiome data analysis. Biostatistics聽14(2), 244鈥?58 (2013) CrossRef
    3. Chen, X., Liu, H., Carbonell, J.G.: Structured sparse canonical correlation analysis. In: International Conference on Artificial Intelligence and Statistics (2012)
    4. Chi, E., Allen, G., et al.: Imaging genetics via sparse canonical correlation analysis. In: 2013 IEEE 10th Int. Sym. on Biomedical Imaging (ISBI), pp. 740鈥?43 (2013)
    5. Hibar, D.P., Kohannim, O., et al.: Multilocus genetic analysis of brain images. Front. Genet.聽2, 73 (2011) CrossRef
    6. Lin, D., Calhoun, V.D., Wang, Y.P.: Correspondence between fMRI and SNP data by group sparse canonical correlation analysis. Med. Image Anal. (2013)
    7. Parkhomenko, E., Tritchler, D., Beyene, J.: Sparse canonical correlation analysis with application to genomic data integration. Statistical Applications in Genetics and Molecular Biology聽8, 1鈥?4 (2009) CrossRef
    8. Risacher, S.L., Saykin, A.J., et al.: Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. Curr. Alzheimer Res.聽6(4), 347鈥?61 (2009) CrossRef
    9. Shen, L., Kim, S., et al.: Whole genome association study of brain-wide imaging phenotypes for identifying quantitative trait loci in MCI and AD: A study of the ADNI cohort. Neuroimage聽53(3), 1051鈥?063 (2010) CrossRef
    10. Sheng, J., Kim, S., et al.: Data synthesis and method evaluation for brain imaging genetics. In: IEEE Int. Sym. on Biomedical Imaging (ISBI), pp. 1202鈥?205 (2014)
    11. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological)聽58(1), 267鈥?88 (1996)
    12. Vounou, M., Nichols, T.E., Montana, G.: Discovering genetic associations with high-dimensional neuroimaging phenotypes: A sparse reduced-rank regression approach. NeuroImage聽53(3), 1147鈥?159 (2010) CrossRef
    13. Wang, H., Nie, F., et al.: Identifying quantitative trait loci via group-sparse multitask regression and feature selection: an imaging genetics study of the ADNI cohort. Bioinformatics聽28(2), 229鈥?37 (2012) CrossRef
    14. Witten, D.M., Tibshirani, R., Hastie, T.: A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics聽10(3), 515鈥?34 (2009) CrossRef
  • 作者单位:Lei Du (20)
    Jingwen Yan (20) (21)
    Sungeun Kim (20)
    Shannon L. Risacher (20)
    Heng Huang (22)
    Mark Inlow (23)
    Jason H. Moore (24)
    Andrew J. Saykin (20)
    Li Shen (20) (21)

    20. Radiology and Imaging Sciences, Indiana University School of Medicine, IN, USA
    21. School of Informatics and Computing, Indiana University Indianapolis, IN, USA
    22. Computer Science and Engineering, University of Texas at Arlington, TX, USA
    23. Mathematics, Rose-Hulman Institute of Technology, IN, USA
    24. Genetics, Geisel School of Medicine, Dartmouth College, NH, USA
  • ISSN:1611-3349
文摘
Brain imaging genetics is an emergent research field where the association between genetic variations such as single nucleotide polymorphisms (SNPs) and neuroimaging quantitative traits (QTs) is evaluated. Sparse canonical correlation analysis (SCCA) is a bi-multivariate analysis method that has the potential to reveal complex multi-SNP-multi-QT associations. Most existing SCCA algorithms are designed using the soft threshold strategy, which assumes that the features in the data are independent from each other. This independence assumption usually does not hold in imaging genetic data, and thus inevitably limits the capability of yielding optimal solutions. We propose a novel structure-aware SCCA (denoted as S2CCA) algorithm to not only eliminate the independence assumption for the input data, but also incorporate group-like structure in the model. Empirical comparison with a widely used SCCA implementation, on both simulated and real imaging genetic data, demonstrated that S2CCA could yield improved prediction performance and biologically meaningful findings.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700