High stability and reactivity of defective graphene-supported Fe n Pt13?em class="a-plus-plus">n (n?=?1, 2, and 3) nanoparti
详细信息    查看全文
  • 作者:Duo Xu ; Yu Tian ; Jingxiang Zhao ; Xuanzhang Wang
  • 关键词:Bimetallic FePt nanoparticles ; Defective graphene ; O2 adsorption ; DFT
  • 刊名:Journal of Nanoparticle Research
  • 出版年:2015
  • 出版时间:January 2015
  • 年:2015
  • 卷:17
  • 期:1
  • 全文大小:1,457 KB
  • 参考文献:1. Anderson AB, Roques J, Mukerjee S, Murthi VS, Markovic NM, Stamenkovic V (2005) Activation energies for oxygen reduction on platinum alloys: theory and experiment. J Phys Chem B 109:1198-203. doi:10.1021/jp047468z CrossRef
    2. Baletto F, Ferrando R (2005) Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev Mod Phys 77:371. doi:10.1103/RevModPhys.77.371 CrossRef
    3. Banhart F, Kotakoski J, Krasheninnikov AV (2010) Structural defects in graphene. ACS Nano 5:26-1. doi:10.1021/nn102598m CrossRef
    4. Bard AJ, Fox MA (1995) Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. Acc Chem Res 28:141-45. doi:10.1021/ar00051a007 CrossRef
    5. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima K, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904-951. doi:10.1021/cr050182l CrossRef
    6. Carlsson JM, Scheffler M (2006) Structural, electronic, and chemical properties of nanoporous carbon. Phys Rev Lett 96:046806. doi:10.1103/PhysRevLett.96.046806 CrossRef
    7. Chang C, Chou M (2004) Alternative low-symmetry structure for 13-atom metal clusters. Phys Rev Lett 93:133401. doi:10.1103/PhysRevLett.93.133401 CrossRef
    8. Chi DH, Cuong NT, Tuan NA, Kim Y-T, Bao HT, Mitani T, Ozaki T, Nagao H (2006) Electronic structures of Pt clusters adsorbed on (5, 5) single wall carbon nanotube. Chem Phys Lett 432:213-17. doi:10.1016/j.cplett.2006.10.063 CrossRef
    9. Coleman VA, Knut R, Karis O, Grennberg H, Jansson U, Quinlan R, Holloway BC, Sanyal B, Eriksson O (2008) Defect formation in graphene nanosheets by acid treatment: an x-ray absorption spectroscopy and density functional theory study. J Phys D Appl Phys 41:062001. doi:10.1039/c3nr02135a CrossRef
    10. Cuong NT, Fujiwara A, Mitani T, Chi DH (2008) Effects of carbon supports on Pt nano-cluster catalyst. Comput Mater Sci 44:163. doi:10.1016/j.commatsci.2008.01.061 CrossRef
    11. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508-17. doi:10.1063/1.458452 CrossRef
    12. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756-764. doi:10.1063/1.1316015 CrossRef
    13. Duan ZY, Wang GF (2013) Comparison of reaction energetics for oxygen reduction reactions on Pt(100), Pt(111), Pt/Ni(100), and Pt/Ni(111) surfaces: a first-principles study. J Phys Chem C 117:6284-292. doi:10.1021/jp400388v CrossRef
    14. Fampiou I, Ramasubramaniam (2012) Binding of Pt nanoclusters to point defects in graphene: adsorption, morphology, and electronic structure. J Phys Chem C 116:6543-555. doi:
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Nanotechnology
    Inorganic Chemistry
    Characterization and Evaluation Materials
    Physical Chemistry
    Applied Optics, Optoelectronics and Optical Devices
  • 出版者:Springer Netherlands
  • ISSN:1572-896X
文摘
Recent experimental studies have shown that the FePt nanoparticles (NPs) assembled on graphene exhibit enhanced durability and catalytic activity for oxygen reduction reaction (ORR) than Pt—only catalysts. In this work, we have performed density functional theory calculations to investigate the stability and reactivity of several Fe n Pt13?em class="a-plus-plus">n NPs deposited on defective graphene for ORR, where n is adopted as 0, 1, 2, and 3, respectively. The results indicate that the alloying between Fe and Pt can enhance the stability of NPs and promote their oxygen reduction activity. Moreover, the monovacancy site in the graphene can provide anchoring sites for these bimetallic NPs by forming strong metal–substrate interaction, ensuring their high stability. Importantly, the O2 adsorption on these composites is weakened in various ways, which is ascribed to the change in their averaged d-band center. Thus, these composites exhibit superior catalytic performance in ORR by providing a balance in the O2 binding strength that allows for enhanced turnover. Our results may be useful to unravel the high stability and reactivity of defective graphene-FePt NPs for ORR from a theoretical perspective.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700