In situ fabrication of a microporous bacterial cellulose/potato starch composite scaffold with enhanced cell compatibility
详细信息    查看全文
  • 作者:Jingxuan Yang (1)
    Xiangguo Lv (2)
    Shiyan Chen (1)
    Zhe Li (1)
    Chao Feng (2)
    Huaping Wang (1)
    Yuemin Xu (2)
  • 关键词:Bacterial cellulose ; In situ modification ; Biomimetic morphology ; Enhanced cell compatibility
  • 刊名:Cellulose
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:21
  • 期:3
  • 页码:1823-1835
  • 全文大小:
  • 参考文献:1. Alvani K, Tester RF, Lin CL, Qi X (2014) Amylolysis of native and annealed potato starches following progressive gelatinisation. Food Hydrocoll 36:273-77 CrossRef
    2. Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinct crystalline forms. Science 223(4633):283-85 CrossRef
    3. Bachdahl H, Helenius G, Bodin A, Nannmark U, Johansson BR, Risberg B, Gatenholm P (2006) Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27(9):2141-149 CrossRef
    4. Backdahl H, Esguerra M, Delbro D, Risberg B, Gatenholm P (2008) Engineering microporosity in bacterial cellulose scaffolds. J Tissue Eng Regen Med 2(6):320-30 CrossRef
    5. Bodin A, Concaro S, Brittberg M, Gatenholm P (2007) Bacterial cellulose as a potential meniscus implant. J Tissue Eng Regen Med 1(6):406-08 CrossRef
    6. Bodin A, Bharadwaj S, Wu S, Gatenholm P, Atala A, Zhang Y (2010) Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31(34):8889-901 CrossRef
    7. Brackmann C, Zaborowska M, Sundberg J, Gatenholm P, Enejder A (2012) In situ imaging of collagen synthesis by osteoprogenitor cells in microporous bacterial cellulose scaffolds. Tissue Eng Part C Methods 18(3):227-34 CrossRef
    8. Buyanov AL, Gofman IV, Revel’skaya LG, Khripunov AK, Tkachenko AA (2010) Anisotropic swelling and mechanical behavior of composite bacterial cellulose–poly(acrylamide or acrylamide–sodium acrylate) hydrogels. J Mech Behav Biomed Mater 3(1):102-11 CrossRef
    9. Cheetham NWH, Tao L (1998) Variation in crystalline type with amylose content in maize starch granules: an X-ray powder diffraction study. Carbohydr Polym 36(4):277-84 CrossRef
    10. Chen HH, Chen LC, Huang HC, Lin SB (2011) In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of / Gluconacetobacter xylinus. Cellulose 18(6):1573-583 CrossRef
    11. Czaja W, Romanovicz D, Brown RM Jr (2004) Structural investigations of microbial cellulose produced in stationary and agitated culture. Cellulose 11(3-):403-11 CrossRef
    12. Czaja WK, Young DJ, Kawecki M, Brown RM (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8(1):1-2 CrossRef
    13. Dugan JM, Collins RF, Gough JE, Eichhorn SJ (2013) Oriented surfaces of adsorbed cellulose nanowhiskers promote skeletal muscle myogenesis. Acta Biomater 9(1):4707-715 CrossRef
    14. Feng C, Xu YM, Fu Q, Zhu WD, Cui L, Chen J (2010) Evaluation of the biocompatibility and mechanical properties of naturally derived and synthetic scaffolds for urethral reconstruction. J Biomed Mater Res A 94(1):317-25 CrossRef
    15. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martínez-Pastor J (2009) Development of self-assembled bacterial cellulose-starch nanocomposites. Mater Sci Eng C Mater Biol Appl 29(4):1098-104 CrossRef
    16. Haigler CH, Brown RM Jr, Benziman M (1980) Calcofluor white ST alters the in vivo assembly of cellulose microfibrils. Science 210(4472):903-06 CrossRef
    17. Haigler CH, White AR, Brown RM Jr, Cooper KM (1982) Alteration of in vivo cellulose ribbon assembly by carboxymethylcellulose and other cellulose derivatives. J Cell Biol 94(1):64-9 CrossRef
    18. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B (2006) In vivo biocompatibility of bacterial cellulose. J Biomed Mater Res A 76(2):431-38 CrossRef
    19. Heβler N, Klemm D (2009) Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16(5):899-10 CrossRef
    20. Hornung M, Ludwig M, Gerrard AM, Schmauder HP (2006) Optimizing the production of bacterial cellulose in surface culture: evaluation of product movement influences on the bioreaction (Part 2). Eng Life Sci 6(6):546-51 CrossRef
    21. Hu W, Chen S, Li X, Shi S, Shen W, Zhang X, Wang H (2009) In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes. Mater Sci Eng C Mater Biol Appl 29(4):1216-219 CrossRef
    22. Huang HC, Chen LC, Lin SB, Hsu CP, Chen HH (2010) In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresour Technol 101(15):6084-091 CrossRef
    23. Kacurakova M, Smith AC, Gidley MJ, Wilson RH (2002) Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydr Res 337(12):1145-153 CrossRef
    24. Kingley A, Tadej M, Colbourn A, Kerr A, Aslan CB (2009) Suprasorb? X +PHMB: antimicrobial and hydrobalance action in a new wound dressing. Wounds UK 5(1):72-7
    25. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 44(22):3358-393 CrossRef
    26. Klemm D, Schumann D, Kramer F, He?ler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205(1):49-6 CrossRef
    27. Kureshi A, Cheema U, Alekseeva T, Cambrey A, Brown R (2010) Alignment hierarchies: engineering architecture from the nanometre to the micrometre scale. J R Soc Interface 7(SUPPL. 6):707-16 CrossRef
    28. Lin YK, Chen KH, Ou KL, Liu M (2011) Effects of different extracellular matrices and growth factor immobilization on biodegradability and biocompatibility of macroporous bacterial cellulose. J Bioact Compat Polym 26(5):508-18 CrossRef
    29. Macosko CW (1994) Rheology: Principles, measurements and applications. VCH publishers, Inc., New York
    30. Marechal Y, Chanzy H (2000) The hydrogen bond network in I(β) cellulose as observed by infrared spectrometry. J Mol Struct 523(1-):183-96 CrossRef
    31. Mondal IH, Kai A (2001) Control of the crystal structure of microbial cellulose during nascent stage. J Appl Polym Sci 79(9):1726-734 CrossRef
    32. Musampa RM, Alves MM, Maria JM (2007) Phase separation, rheology and microstructure of pea protein-kappa-carrageenan mixtures. Food Hydrocol 21(1):92-9 CrossRef
    33. Nakayama A, Kakugo A, Gong PJ, Osada Y, Takai M, Erata T, Kawano S (2004) High mechanical strength double-network hydrogel with bacterial cellulose. Adv Funct Mater 14(11):1124-128 CrossRef
    34. Recouvreux DOS, Rambo CR, Berti FV, Carminatti CA, Ant?nio RV, Porto LM (2011) Novel three-dimensional cocoon-like hydrogels for soft tissue regeneration. Mater Sci Eng C Mater Biol Appl 31(2):151-57 CrossRef
    35. Rindlav A, Hulleman SHD, Gatenholm P (1997) Formation of starch films with varying crystallinity. Carbohydr Polym 34(1-):25-0 CrossRef
    36. Ross P, Mayer R, Benziman M (1991) Cellulose biosynthesis and function in bacteria. Microbiol Mol Biol Rev 55(1):35-8
    37. Ruka DR, Simon GP, Dean KM (2012) In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym 92(2):1717-723 CrossRef
    38. Seagal L, Creely JJ, Martin AE Jr, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text Res J 29(10):786-94 CrossRef
    39. Shih IL (2010) Microbial exo-polysaccharides for biomedical applications. Mini Rev Med Chem 10(14):1345-355 CrossRef
    40. Suzuki S, Hirai A, Horii F (2012) Formation and structure of the complexes of sub-elementary fibrils of bacterial cellulose with fluorescent brightener molecules. Cellulose 19(5):1607-618 CrossRef
    41. van Soest JJG, Tournois H, De Wit D, Vliegenhart JFG (1995) Short-range structure in (partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydr Res 279:201-14 CrossRef
    42. Xie JW, Ma B, Michael PL, Shuler FD (2012) Fabrication of nanofiber scaffolds with gradations in fiber organization and their potential applications. Macromol Biosc 12(10):1336-341 CrossRef
    43. Xu CY, Yang F, Wang S, Ramakrishna S (2004) In vitro study of human vascular endothelial cell function on materials with various surface roughness. J Biomed Mater Res A 71(1):154-61 CrossRef
    44. Yang SF, Leong KF, Du ZH, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7(6):679-89 CrossRef
    45. Yang CX, Gao C, Wan YZ, Tang TT, Zhang SH, Dai KR (2011) Preparation and characterization of three-dimensional nanostructured macroporous bacterial cellulose/agarose scaffold for tissue engineering. J Porous Mat 18(5):545-52 CrossRef
    46. Zaborowska M, Bodin A, B?ckdahl H, Popp J, Goldstein A, Gatenholm P (2010) Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater 6(7):2540-547 CrossRef
    47. Zugenmaier P (2008) Crystalline cellulose and cellulose derivatives: characterization and structures, 1st edn. Springer, Heidelberg CrossRef
  • 作者单位:Jingxuan Yang (1)
    Xiangguo Lv (2)
    Shiyan Chen (1)
    Zhe Li (1)
    Chao Feng (2)
    Huaping Wang (1)
    Yuemin Xu (2)

    1. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Key Laboratory of Textile Science and Technology (Ministry of Education), College of Materials Science and Engineering, Donghua University, Shanghai, 201620, People’s Republic of China
    2. Department of Urology, Affiliated Sixth People’s Hospital, Shanghai Jiaotong University, Shanghai, 201620, People’s Republic of China
  • ISSN:1572-882X
文摘
Microporous bacterial cellulose/potato starch (BC/PS) composites composed of a compact upper surface and transparent lower surface were fabricated by an in situ method by adding PS into the culture medium. The special structure formation mechanism was explored. Compared with original BC, a locally oriented surface morphology was observed when the concentration of PS in the culture media was above 1.0?%. Many more free spaces were made after modification with pore size reaching 40?μm. An obvious cell ingrowth tendency was observed on the porous surface of BC/PS composites as the starch content increased, while most of muscle-derived cells could only proliferate on the surface of original BCs. In vivo implantation showed the transparent fibrous lower side of BC/PS composites was much easier for neovascularization, and no obvious sign of inflammation was observed.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700