Radial n-i-p structure SiNW-based microcrystalline silicon thin-film solar cells on flexible stainless steel
详细信息    查看全文
  • 作者:Xiaobing Xie (1)
    Xiangbo Zeng (1)
    Ping Yang (1)
    Hao Li (1)
    Jingyan Li (1)
    Xiaodong Zhang (1)
    Qiming Wang (1)
  • 关键词:Silicon nanowires ; Microcrystalline ; Solar cells
  • 刊名:Nanoscale Research Letters
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:7
  • 期:1
  • 全文大小:499KB
  • 参考文献:1. Lewis NS: Toward cost-effective solar energy use. / Science 2007, 315:798-01. CrossRef
    2. Shah AV, Schade H, Vanecek M, Meier J, Vallat-Sauvain E, Wyrsch N, Kroll U, Droz C, Bailat J: Thin-film silicon solar cell technology. / Prog Photovoltaics 2004, 12:113-42. CrossRef
    3. Tian BZ, Zheng XL, Kempa TJ, Fang Y, Yu NF, Yu GH, Huang JL, Lieber CM: Coaxial silicon nanowires as solar cells and nanoelectronic power sources. / Nature 2007, 449:885-90. CrossRef
    4. Kayes BM, Atwater HA, Lewis NS: Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. / J Appl Phys 2005, 97:1140302-140311. CrossRef
    5. Jie Tang JS, Lili Z, Zhongquan M: Fabrication and optical properties of silicon nanowires arrays by electroless Ag-catalyzed etching. / Nano-Micro Lett 2011, 3:129-34.
    6. Huang YF, Chattopadhyay S, Jen YJ, Peng CY, Liu TA, Hsu YK, Pan CL, Lo HC, Hsu CH, Chang YH, Lee CS, Chen KH, Chen LC: Improved broadband and quasi-omnidirectional anti-reflection properties with biomimetic silicon nanostructures. / Nat Nanotechnol 2007, 2:770-74. CrossRef
    7. Hu L, Chen G: Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. / Nano Lett 2007, 7:3249-252. CrossRef
    8. Street RA, Qi P, Lujan R, Wong WS: Reflectivity of disordered silicon nanowires. / Appl Phys Lett 2008,93(163109):3.
    9. Garnett E, Yang PD: Light trapping in silicon nanowire solar cells. / Nano Lett 2010, 10:1082-087. CrossRef
    10. Li XC, Li JS, Chen T, Tay BK, Wang JX, Yu HY: Periodically aligned Si nanopillar arrays as efficient antireflection layers for solar cell applications. / Nanoscale Res Lett 2010, 5:1721-726. CrossRef
    11. Yuriy Vashpanov J-IJ: Optical absorption and photoelectron collection properties of silicon wafers with conical quantum nanocrystals structure. / Nano-Micro Lett 2010, 2:149-53.
    12. Pei ZW, Chang ST, Liu CW, Chen YC: Numerical simulation on the photovoltaic behavior of an amorphous-silicon nanowire-array solar cell. / IEEE Electr Device L 2009, 30:1305-307. CrossRef
    13. Yu LW, O’Donnell B, Alet PJ, Cabarrocas PRI: All-in-situ fabrication and characterization of silicon nanowires on TCO/glass substrates for photovoltaic application. / Sol Energ Mat Sol C 2010, 94:1855-859. CrossRef
    14. Jinyoun C, O’Donnell B, Yu LW, Kim K-H, Ngo I, Cabarrocas PR: Sn-catalyzed silicon nanowire solar cells with 4.9% efficiency grown on glass. / Photovolt: Res Appl 2012.
    15. Yu LW, Fortuna F, O’Donnell B, Jeon T, Foldyna M, Picardi C: Cabarrocas PRi: bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells. / Nano Lett 2012, 12:4153-158. CrossRef
    16. Vetterl O, Finger F, Carius R, Hapke P, Houben L, Kluth O, Lambertz A, Muck A, Rech B, Wagner H: Intrinsic microcrystalline silicon: a new material for photovoltaics. / Sol Energ Mat Sol C 2000, 62:97-08. CrossRef
    17. Jeon MS, Tomitsuka Y, Aoyagi M, Kamisako K: Effects of hydrogen radical treatment on fabrication of catalyst nanoparticles from metal oxide film at low temperature and synthesis of silicon nanowires. / Jpn J Appl Phys 2009,48(015002):1-.
    18. Xie XB, Zeng XB, Yang P, Wang C, Wang QM: In situ formation of indium catalysts to synthesize crystalline silicon nanowires on flexible stainless steel substrates by PECVD. / J Cryst Growth 2012, 347:7-0. CrossRef
    19. Wang Q, Yue GZ, Li J, Han DX: A combinatorial study of materials in transition from amorphous to microcrystalline silicon. / Solid State Commun 1999, 113:175-78. CrossRef
    20. Veprek S, Sarott FA, Iqbal Z: Effect of grain-boundaries on the Raman-spectra, optical-absorption, and elastic light-scattering in nanometer-sized crystalline silicon. / Phys Rev B 1987, 36:3344-350. CrossRef
    21. Tang M, Chang ST, Chen TC, Pei ZW, Wang WC, Huang J: Simulation of nanorod structures for an amorphous silicon-based solar cell. / Thin Solid Films 2010, 518:S259-S261. CrossRef
  • 作者单位:Xiaobing Xie (1)
    Xiangbo Zeng (1)
    Ping Yang (1)
    Hao Li (1)
    Jingyan Li (1)
    Xiaodong Zhang (1)
    Qiming Wang (1)

    1. State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
  • ISSN:1556-276X
文摘
Radial n-i-p structure silicon nanowire (SiNW)-based microcrystalline silicon thin-film solar cells on stainless steel foil was fabricated by plasma-enhanced chemical vapor deposition. The SiNW solar cell displays very low optical reflectance (approximately 15% on average) over a broad range of wavelengths (400 to 1,100 nm). The initial SiNW-based microcrystalline (μc-Si:H) thin-film solar cell has an open-circuit voltage of 0.37 V, short-circuit current density of 13.36 mA/cm2, fill factor of 0.3, and conversion efficiency of 1.48%. After acid treatment, the performance of the modified SiNW-based μc-Si:H thin-film solar cell has been improved remarkably with an open-circuit voltage of 0.48 V, short-circuit current density of 13.42 mA/cm2, fill factor of 0.35, and conversion efficiency of 2.25%. The external quantum efficiency measurements show that the external quantum efficiency response of SiNW solar cells is improved greatly in the wavelength range of 630 to 900 nm compared to the corresponding planar film solar cells.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700