Biocatalytic desymmetrization of 3-substituted glutaronitriles by nitrilases. A convenient chemoenzymatic access to optically active (S)-Pregabalin and (R)-Baclofen
详细信息    查看全文
  • 作者:YiTao Duan (1)
    PeiYuan Yao (1)
    Jie Ren (1)
    Chao Han (1) (2)
    Qian Li (1)
    Jing Yuan (1)
    JinHui Feng (1)
    QiaQing Wu (1)
    DunMing Zhu (1)
  • 关键词:enzymatic desymmetrization ; nitrilases ; (S) ; Pregabalin ; (R) ; Baclofen
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:57
  • 期:8
  • 页码:1164-1171
  • 全文大小:683 KB
  • 参考文献:1. Wall GM, Baker JK. Metabolism of 3-( / p-chlorophenyl) pyrrolidine. Structural effects in conversion of a prototype γ-aminobutyric acid prodrug to lactam and γ-aminobutyric acid type metabolites. / J Med Chem, 1989, 32: 1340-348 CrossRef
    2. Ordó?ez M, Cativiela C. Stereoselective synthesis of γ-amino acids. / Tetrahedron: Asymmetry, 2007, 18: 3-9 CrossRef
    3. Garbutt JC. Emerging pharmacologic treatments for alcohol dependence. / J Clin Psychiat, 2006, 67: 35-0
    4. Sofuoglu M, Lappalainen J. GABAergic agents for the treatment of nicotine dependence. In: George TP. / Medication Treatments for Nicotine Dependence. Boca Raton: Taylor & Francis Group, 2007
    5. Liu JM, Wang X, Ge ZM, Sun Q, Cheng TM, Li RT. Solvent-free organocatalytic Michael addition of diethyl malonate to nitroalkenes: the practical synthesis of Pregabalin and γ-nitrobutyric acid derivatives. / Tetrahedron, 2011, 67: 636-40 CrossRef
    6. Shao C, Yu HJ, Wu NY, Tian P, Wang R, Feng CG, Lin GQ. Asymmetric synthesis of β-substituted γ-lactams via rhodium/diene-catalyzed 1,4-additions: application to the synthesis of ( / R)-Baclofen and ( / R)-Rolipram. / Org Lett, 2011, 13: 788-91 CrossRef
    7. Yu HJ, Shao C, Cui Z, Feng CG, Lin GQ. Highly enantioselective alkenylation of cyclic α,β-unsaturated carbonyl compounds as catalyzed by a rhodium-diene complex: application to the synthesis of ( / S)-Pregabalin and (?-α-Kainic acid. / Chem Eur J, 2012, 18: 13274-3278 CrossRef
    8. Yang XF, Ding CH, Li XH, Huang JQ, Hou XL, Dai LX, Wang PJ. Regio- and enantioselective palladium-catalyzed allylic alkylation of nitromethane with monosubstituted allyl substrates: synthesis of ( / R)-Rolipram and ( / R)-Baclofen. / J Org Chem, 2012, 77: 8980-985 CrossRef
    9. Baran R, Veverkova E, Skvorcova A, Sebesta R. Enantioselective Michael addition of 1,3-dicarbonyl compounds to a nitroalkene catalyzed by chiral squaramides: a key step in the synthesis of Pregabalin. / Org Biomol Chem, 2013, 11: 7705-711 CrossRef
    10. Palomo MJ, Cabrera Z. Enzymatic desymmetrization of prochiral molecules. / Curr Org Synth, 2012, 9: 791-05 CrossRef
    11. Garcia-Urdiales E, Alfonso I, Gotor V. Update 1 of: enantioselective enzymatic desymmetrizations in organic synthesis. / Chem Rev, 2011, 111: PR110–PR180 CrossRef
    12. Bayer S, Birkemeyer C, Ballschmiter M. A nitrilase from a metagenomic library acts regioselectively on aliphatic dinitriles. / Appl Microbiol Biot, 2011, 89: 91-8 CrossRef
    13. Effenberger F, Osswald S. Selective hydrolysis of aliphatic dinitriles to monocarboxylic acids by a nitrilase from / Arabidopsis thaliana. / Synthesis-Stuttgart, 2001: 1866-872
    14. Yoshida T, Mitsukura K, Mizutani T, Nakashima R, Shimizu Y, Kawabata H, Nagasawa T. Enantioselective synthesis of ( / S)-2-cyano-2-methylpentanoic acid by nitrilase. / Biotechnol Lett, 2013, 35: 685-88 CrossRef
    15. Zhu DM, Mukherjee C, Biehl ER, Hua L. Nitrilase-catalyzed selec tive hydrolysis of dinitriles and green access to the cyanocarboxylic acids of pharmaceutical importance. / Adv Synth Catal, 2007, 349: 1667-670 CrossRef
    16. Mukherjee C, Zhu DM, Biehl ER, Hua L. Exploring the synthetic applicability of a cyanobacterium nitrilase as catalyst for nitrile hydrolysis. / Eur J Org Chem, 2006, 2006: 5238-242 CrossRef
    17. Vorwerk S, Biernacki S, Hillebrand H, Janzik I, Muller A, Weiler EW, Piotrowski M. Enzymatic characterization of the recombinant / Arabidopsis thaliana nitrilase subfamily encoded by the NIT2/NIT1/NIT3-gene cluster. / Planta, 2001, 212: 508-16 CrossRef
    18. Liu ZQ, Dong LZ, Cheng F, Xue YP, Wang YS, Ding JN, Zheng YG, Shen YC. Gene cloning, expression, and characterization of a nitrilase from / Alcaligenes faecalis ZJUTB10. / J Agr Food Chem, 2011, 59: 11560-1570 CrossRef
    19. Desantis G, Wong K, Farwell B, Chatman K, Zhu ZL, Tomlinson G, Huang HJ, Tan XQ, Bibbs L, Chen P, Kretz K, Burk MJ. Creation of a productive, highly enantioselective nitrilase through gene site saturation mutagenesis (GSSM). / J Am Chem Soc, 2003, 125: 11476-1477 CrossRef
    20. Zhu DM, Mukherjee C, Yang Y, Rios BE, Gallagher DT, Smith NN, Biehl ER, Hua L. A new nitrilase from / Bradyrhizobium japonicum USDA 110. Gene cloning, biochemical characterization and substrate specificity. / J Biotechnol, 2008, 133: 327-33 CrossRef
    21. Zhu DM, Mukherjee C, Biehl ER, Hua L. Discovery of a mandelonitrile hydrolase from / Bradyrhizobium japonicum USDA110 by rational genome mining. / J Biotechnol, 2007, 129: 645-50 CrossRef
    22. Mukherjee C, Zhu DM, Biehl ER, Parmar RR, Hua L. Enzymatic nitrile hydrolysis catalyzed by nitrilase ZmNIT2 from maize. An unprecedented beta-hydroxy functionality enhanced amide formation. / Tetrahedron, 2006, 62: 6150-154 CrossRef
    23. Fawcett JK, Scott JE. A rapid and precise method for the determination of urea. / J Clin Pathol, 1960, 13: 156-59 CrossRef
    24. Hamer?ak Z, Stipeti? I, Avdagi? A. An efficient synthesis of ( / S)-3-aminomethyl-5-methylhexanoic acid (Pregabalin) via quininemediated desymmetrization of cyclic anhydride. / Tetrahedron: Asymmetry, 2007, 18: 1481-485 CrossRef
    25. Wang MX, Liu CS, Li JS. Enzymatic desymmetrization of 3-alkyl- and 3-arylglutaronitriles, a simple and convenient approach to optically active 4-amino-3-phenylbutanoic acids. / Tetrahedron: Asymmetry, 2002, 12: 3367-373 CrossRef
    26. Martínková L, Vejvoda V, Kaplan O, K?en V, Bezou?ka K, Cantarella M. Nitrilases from filamentous fungi. In: Fessner WD, Anthonsen T. / Modern Biocatalysis: Stereoselective and Environmentally Friendly Reactions. Weinheim: Wiley-VCH, 2009
    27. Raczynska JE, Vorgias CE, Antranikian G, Rypniewski W. Crystallographic analysis of a thermoactive nitrilase. / J Struct Biol, 2011, 173: 294-02 CrossRef
    28. Mueller P, Egorova K, Vorgias CE, Boutou E, Trauthwein H, Verseck S, Antranikian G. Cloning, overexpression, and characterization of a thermoactive nitrilase from the hyperthermophilic archaeon / Pyrococcus abyssi. / Protein Expres Purif, 2006, 47: 672-81 CrossRef
    29. Novo C, Tata R, Clemente A, Brown PR. Pseudomonas aeruginosa aliphatic amidase is related to the nitrilase/cyanide hydratase enzyme family and Cys166 is predicted to be the active site nucleophile of the catalytic mechanism. / FEBS Lett, 1995, 367: 275-79 CrossRef
    30. Stevenson DE, Feng R, Dumas F, Groleau D, Mihoc A, Storer AC. Mechanistic and structural studies on / Rhodococcus ATCC 39484 nitrilase. / Biotechnol Appl Bioc, 1992, 15: 283-02
    31. Stevenson DE, Feng R, Storer AC. Detection of covalent enzyme-substrate complexes of nitrilase by ion-spray mass spectroscopy. / FEBS Lett, 1990, 277: 112-14 CrossRef
    32. Xie ZY, Feng JL, Garcia E, Bernett M, Yazbeck D, Tao JH. Cloning and optimization of a nitrilase for the synthesis of (3 / S)-3-cyano-5-methyl hexanoic acid. / J Mol Catal B: Enzym, 2006, 41: 75-0 CrossRef
  • 作者单位:YiTao Duan (1)
    PeiYuan Yao (1)
    Jie Ren (1)
    Chao Han (1) (2)
    Qian Li (1)
    Jing Yuan (1)
    JinHui Feng (1)
    QiaQing Wu (1)
    DunMing Zhu (1)

    1. National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Center for Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
    2. College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
  • ISSN:1869-1870
文摘
Desymmetrization of prochiral 3-substituted glutaronitriles offers a new approach to access (S)-Pregabalin and (R)-Baclofen. A number of nitrilases from diverse sources were screened with 3-isobutylglutaronitriles (1a) or 3-(4-chlorophenyl)glutaronitriles (1b) as the substrate. Some nitrilases were found to catalyze the desymmetric hydrolysis of 1a and 1b to form optically active 3-(cyanomethyl)-5-methylhexanoic acid (2a) and 3-(4-chlorophenyl)-4-cyanobutanoic acid (2b) with high enantiomeric excesse (ee), respectively. This cannot be achieved using traditional chemical hydrolysis. Among them, AtNIT3 generated (R)-2b, whereas BjNIT6402 and HsNIT produced the opposite (S)-enantiomer with high conversions and ee values. Not only the nitrilases showed different activities and stereoselectivities toward these 3-substituted glutaronitriles, the 3-substituent of the substrates also exerted great effect on the enzyme activity and stereoselectivity. (S)-2a and (S)-2b were prepared with high yields and ee values using BjNIT6402 and HsNIT as the biocatalysts, respectively. A straightforward Curtius rearrangement of (S)-2a and (S)-2b, followed by the acidic hydrolysis, afforded (S)-Pregabalin and (R)-Baclofen. This offers a new platform methodology for the synthesis of optically active β-substituted γ-amino acids of pharmaceutical importance.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700