MicroRNA-9 regulates osteoblast differentiation and angiogenesis via the AMPK signaling pathway
详细信息    查看全文
  • 作者:Jining Qu ; Daigang Lu ; Hua Guo ; Wusheng Miao ; Ge Wu…
  • 关键词:MicroRNA ; 9 ; Bone repair ; Osteoblast differentiation ; Angiogenesis ; AMPK
  • 刊名:Molecular and Cellular Biochemistry
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:411
  • 期:1-2
  • 页码:23-33
  • 全文大小:1,376 KB
  • 参考文献:1.Dong S, Yang B, Guo H, Kang F (2012) MicroRNAs regulate osteogenesis and chondrogenesis. Biochem Biophys Res Commun 418:587–591CrossRef PubMed
    2.Long F, Ornitz DM (2013) Development of the endochondral skeleton. CSH Perspect Biol 5:a008334
    3.Hu N, Jiang D, Huang E, Liu X, Li R, Liang X, Kim SH, Chen X, Gao J-L, Zhang H (2013) BMP9-regulated angiogenic signaling plays an important role in the osteogenic differentiation of mesenchymal progenitor cells. J Cell Sci 126:532–541PubMedCentral CrossRef PubMed
    4.Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R, Karsenty G (2012) miR-34 s inhibit osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197:509–521PubMedCentral CrossRef PubMed
    5.Portal-Nunez S, Lozano D, Esbrit P (2012) Role of angiogenesis on bone formation. Histol Histopathol 27:559–566PubMed
    6.Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873CrossRef PubMed
    7.Dirckx N, Hul M, Maes C (2013) Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Res C 99:170–191CrossRef
    8.Chen G, Deng C, Li Y-P (2012) TGF-β and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272PubMedCentral CrossRef PubMed
    9.Taipaleenmäki H, Hokland LB, Chen L, Kauppinen S, Kassem M (2012) Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation. Eur J Endocrinol 166:359–371CrossRef PubMed
    10.Izu Y, Sun M, Zwolanek D, Veit G, Williams V, Cha B, Jepsen KJ, Koch M, Birk DE (2011) Type XII collagen regulates osteoblast polarity and communication during bone formation. J Cell Biol 193:1115–1130PubMedCentral CrossRef PubMed
    11.Thompson WR, Rubin CT, Rubin J (2012) Mechanical regulation of signaling pathways in bone. Gene 503:179–193PubMedCentral CrossRef PubMed
    12.Inoki K, Kim J, Guan K-L (2012) AMPK and mTOR in cellular energy homeostasis and drug targets. Annu Rev Pharmacol 52:381–400CrossRef
    13.Palacios OM, Carmona JJ, Michan S, Chen KY, Manabe Y, Ward Iii JL, Goodyear LJ, Tong Q (2009) Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1α in skeletal muscle. Aging (Albany NY) 1:771
    14.Hardie DG, Sakamoto K (2006) AMPK: a key sensor of fuel and energy status in skeletal muscle. Physiology 21:48–60CrossRef PubMed
    15.Chang JT, Wherry EJ, Goldrath AW (2014) Molecular regulation of effector and memory T cell differentiation. Nat Immunol 15:1104–1115PubMedCentral CrossRef PubMed
    16.Thompson AM, Martin KA, Rzucidlo EM (2014) Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PLoS One 9:e85495PubMedCentral CrossRef PubMed
    17.Huntzinger E, Izaurralde E (2011) Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet 12:99–110CrossRef PubMed
    18.Poltronieri P, D’Urso PI, Mezzolla V, D’Urso OF (2013) Potential of anti-cancer therapy based on anti-miR-155 oligonucleotides in glioma and brain tumours. Chem Biol Drug Des 81:79–84CrossRef PubMed
    19.Boese AS, Majer A, Saba R, Booth SA (2013) Small RNA drugs for prion disease: a new frontier. Expert Opin Drug Discov 8:1265–1284CrossRef PubMed
    20.Okamoto H, Matsumi Y, Hoshikawa Y, Takubo K, Ryoke K, Shiota G (2012) Involvement of microRNAs in regulation of osteoblastic differentiation in mouse induced pluripotent stem cells. PLoS One 7:e43800PubMedCentral CrossRef PubMed
    21.Suomi S, Taipaleenmaki H, Seppanen A, Ripatti T, Vaananen K, Hentunen T, Saamanen AM, Laitala-Leinonen T (2008) MicroRNAs regulate osteogenesis and chondrogenesis of mouse bone marrow stromal cells. Gene Regul Syst Bio 2:177–191PubMedCentral PubMed
    22.Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39:608–616CrossRef PubMed
    23.Hermeking H (2012) MicroRNAs in the p53 network: micromanagement of tumour suppression. Nat Rev Cancer 12:613–626CrossRef PubMed
    24.Iorio MV, Croce CM (2012) microRNA involvement in human cancer. Carcinogenesis 33:1126–1133PubMedCentral CrossRef PubMed
    25.Genda Y, Arai M, Ishikawa M, Tanaka S, Okabe T, Sakamoto A (2013) microRNA changes in the dorsal horn of the spinal cord of rats with chronic constriction injury: a TaqMan® Low Density Array study. Int J Mol Med 31:129–137PubMed
    26.Wu D, Raafat A, Pak E, Clemens S, Murashov AK (2012) Dicer-microRNA pathway is critical for peripheral nerve regeneration and functional recovery in vivo and regenerative axonogenesis in vitro. Exp Neurol 233:555–565PubMedCentral CrossRef PubMed
    27.Han R, Kan Q, Sun Y, Wang S, Zhang G, Peng T, Jia Y (2012) MiR-9 promotes the neural differentiation of mouse bone marrow mesenchymal stem cells via targeting zinc finger protein 521. Neurosci Lett 515:147–152CrossRef PubMed
    28.Li H, Xie H, Liu W, Hu R, Huang B, Tan Y-F, Liao E-Y, Xu K, Sheng Z-F, Zhou H-D (2009) A novel microRNA targeting HDAC5 regulates osteoblast differentiation in mice and contributes to primary osteoporosis in humans. J Clin Investig 119:3666PubMedCentral CrossRef PubMed
    29.Andris F, Leo O (2015) AMPK in lymphocyte metabolism and function. Int Rev Immunol 34:67–81CrossRef PubMed
    30.Li Y, Peng T, Li L, Wang X, Duan R, Gao H, Guan W, Lu J, Teng J, Jia Y (2014) MicroRNA-9 regulates neural apoptosis in methylmalonic acidemia via targeting BCL2L11. Int J Dev Neurosci 36:19–24CrossRef PubMed
    31.Brandenburger T, Castoldi M, Brendel M, Grievink H, Schlosser L, Werdehausen R, Bauer I, Hermanns H (2012) Expression of spinal cord microRNAs in a rat model of chronic neuropathic pain. Neurosci Lett 506:281–286CrossRef PubMed
    32.Zhuang G, Wu X, Jiang Z, Kasman I, Yao J, Guan Y, Oeh J, Modrusan Z, Bais C, Sampath D, Ferrara N (2012) Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J 31:3513–3523PubMedCentral CrossRef PubMed
    33.Chevallier N, Anagnostou F, Zilber S, Bodivit G, Maurin S, Barrault A, Bierling P, Hernigou P, Layrolle P, Rouard H (2010) Osteoblastic differentiation of human mesenchymal stem cells with platelet lysate. Biomaterials 31:270–278CrossRef PubMed
    34.Singh A, Ali S, Mahdi AA, Srivastava RN (2012) MicroRNAs and their role in bone remodeling and pathogenesis. Br J Med Res 2:727–749CrossRef
    35.Carmeliet P, Lampugnani MG, Moons L, Breviario F, Compernolle V, Bono F, Balconi G, Spagnuolo R, Oosthuyse B, Dewerchin M, Zanetti A, Angellilo A, Mattot V, Nuyens D, Lutgens E, Clotman F, de Ruiter MC, Gittenberger-de Groot A, Poelmann R, Lupu F, Herbert JM, Collen D, Dejana E (1999) Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98:147–157CrossRef PubMed
    36.Kunimasa K, Ahn M-R, Kobayashi T, Eguchi R, Kumazawa S, Fujimori Y, Nakano T, Nakayama T, Kaji K and Ohta T (2011) Brazilian propolis suppresses angiogenesis by inducing apoptosis in tube-forming endothelial cells through inactivation of survival signal ERK1/2. Evid Based Complement Altern Med 2011. doi:10.​1093/​ecam/​nep024
    37.Zhao X, Zmijewski JW, Lorne E, Liu G, Park Y-J, Tsuruta Y, Abraham E (2008) Activation of AMPK attenuates neutrophil proinflammatory activity and decreases the severity of acute lung injury. Am J Physiol-Lung C 295:L497–L504CrossRef
    38.Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2008) Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun 375:414–419CrossRef PubMed
    39.Nagata D, Mogi M, Walsh K (2003) AMP-activated protein kinase (AMPK) signaling in endothelial cells is essential for angiogenesis in response to hypoxic stress. J Biol Chem 278:31000–31006CrossRef PubMed
  • 作者单位:Jining Qu (1)
    Daigang Lu (2)
    Hua Guo (3)
    Wusheng Miao (1)
    Ge Wu (1)
    Meifen Zhou (1)

    1. Department of Pediatric Orthopedics, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
    2. Department of Trauma, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
    3. Department of Emergency, Honghui Hospital, Xi’an Jiaotong University Health Science Center, Xi’an, 710054, China
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Medical Biochemistry
    Oncology
    Cardiology
  • 出版者:Springer Netherlands
  • ISSN:1573-4919
文摘
MiR-9 has been found to be involved in the repair of spinal cord injury and regulates the proliferation and differentiation of mesenchymal stem cells. However, the role of miR-9 in repair of bone defects has not been well studied. The current study was designed to investigate its role and potential underlying mechanism in regulating osteoblast differentiation and angiogenesis. After treating the murine pre-osteoblast cell line MC3T3-E1 with BMP2, miR-9 expression was obviously down-regulated. Following transfection with miR-9 mimics, its overexpression enhanced the differentiation of MC3T3-E1 cells into osteoblasts as evidence that miR-9 up-regulated the mRNA levels of osteoblast differentiation-related protein, as well as increased differentiation and mineralization of osteoblasts. Further functional analysis has shown that miR-9 overexpression effectively increased human umbilical vein endothelial cell proliferation. Moreover, miR-9 up-regulation promoted cell migration, VEGF, and VE-cadherin concentrations, as well as tube formation in vitro. The mechanistic assay demonstrated that overexpression of miR-9-induced activation of the AMPK signaling pathway. Taken together, our findings suggested that miR-9 overexpression promoted osteoblast differentiation and angiogenesis via the AMPK signaling pathway, representing a novel and potential therapeutic target for the treatment of bone injury-related diseases. Keywords MicroRNA-9 Bone repair Osteoblast differentiation Angiogenesis AMPK

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700