Probabilistic quantum relay communication in the noisy channel with analogous space-time code
详细信息    查看全文
  • 作者:Jinjing Shi (1) (3)
    Ronghua Shi (1)
    Ying Guo (1)
    Xiaoqi Peng (2)
    Moon Ho Lee (3)
  • 关键词:Quantum relay ; Quantum communication ; Space ; time code ; Quantum channel
  • 刊名:Quantum Information Processing
  • 出版年:2013
  • 出版时间:May 2013
  • 年:2013
  • 卷:12
  • 期:5
  • 页码:1859-1870
  • 全文大小:323 KB
  • 参考文献:1. Hausl C., Hagenauer J.: Relay communication with hierarchical modulation. IEEE Commun. Lett. 11(1), 64鈥?6 (2007) CrossRef
    2. Tarokh V., Jafarkhani H., Calderbank A.R.: Space-time block codes from orthogonal designs. IEEE Trans. Inform. Theor. 45(5), 1456鈥?467 (1999) CrossRef
    3. Gisin N., Thew R.T.: Quantum communication. Nat. Photon. 1, 165鈥?71 (2007) CrossRef
    4. Briegel H.J., D眉r W., Cirac J.I., Zoller P.: Quantum repeaters for communication, arXiv:quant-ph/9803056v1 20 Mar (1998)
    5. D眉r W., Briegel H.J., Cirac J.I., Zoller P.: Quantum repeaters based on entanglement purification, arXiv:quant-ph/9808065v1 31 Aug (1998)
    6. Jacobs B.C., Pittman T.B., Franson J.D.: Quantum relays and noise suppression using linear optics. Phys. Rev. A 66(052307), 1鈥? (2002)
    7. Zhang A.N., Chen Y.A., Lu C.Y., Qi Zhou X., Zhao Z., Zhang Q., Yang T., Pan J.W.: Quantum-relay-assisted key distribution over high photon loss channels, arXiv:quant-ph/0508062v1, 1鈥?2 (2005)
    8. Guo Y., Chen Z.G., Song W., Lee M.H.: A transmit diversity scheme for quantum communications. Physica Scripta 78(065402), 1鈥? (2008)
    9. Shi R.H., Shi J.J., Guo Y., Peng X.Q., Lee M.H.: Quantum MIMO communication scheme based on quantum teleportation with triplet states. Int. J. Theor. Phys. 50(8), 2334鈥?346 (2011) CrossRef
    10. Djordjevic I.B.: Photonic implementation of quantum relay and encoders/decoders for sparse-graph quantum codes based on optical hybrid. IEEE Photon. Technol. Lett. 22(19), 1449鈥?451 (2010) CrossRef
    11. Wang C., Ma H.Q., Jiao R.Z., Zhang Y.: An improved quantum repeater protocol using hyperentangled state purification. Eur. Phys. J. D 64, 573鈥?78 (2011) CrossRef
    12. Alamouti S.M.: A simple transmit diversity technique for wireless communications. IEEE J. Select Areas Commun. 16(8), 1451鈥?458 (1998) CrossRef
    13. Li Z., Xia X.G.: A simple Alamouti spaceCTime transmission scheme for asynchronous cooperative systems. IEEE Signal Process. Lett. 14(11), 804鈥?07 (2007) CrossRef
    14. Griffiths R.B.: Quantum Channels, Kraus Operators, POVMs, Version of 4, http://quantum.phys.cmu.edu/QCQI/qitd411.pdf, qitd411, 1鈥?8 (2010)
    15. Li X.X., Li G.F.: Static gain, optical modulation response, and nonlinear phase noise in saturated quantum-dot semiconductor optical amplifiers. IEEE J Quantum Elec. 45(5), 499鈥?05 (2009) CrossRef
    16. Wang C., Shen Y.B., Li X.H., Deng F.G., Zhang W., Long G.L.: Efficient entanglement purification for doubly entangled photon state. Sci. China. Ser. E-Technol. Sci. 52(12), 3464鈥?467 (2009). doi:10.1007/s11431-009-0307-x CrossRef
    17. Biham E., Boyer M., Brassard G., Graaf J., Mor T.: Security of quantum key distribution against all collective attacks. Algorithmica 34, 372鈥?88 (2002) CrossRef
    18. Deng F.G., Li X.H., Li C.Y., Zhou P., Zhou H.Y.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs. Phys. Lett. A 359, 359鈥?65 (2006) CrossRef
    19. Dobrzanki R.D., Sen A., Sen U., Lewenstein M.: Entanglement enhances security in quantum communication. Phys. Rev. A. 80, 012311 (2009) CrossRef
    20. Vandevender A.P., Kwiat P.G.: High efficiency single photon detection via frequency up-conversion. J. Modern Opt. 51(9-10), 1433鈥?445 (2004)
    21. Grangier P., Levenson J.A., Poizat J.P.: Quantum non-demolition measurements in optics. Nature 396, 537鈥?42 (1998). doi:10.1038/25059 CrossRef
  • 作者单位:Jinjing Shi (1) (3)
    Ronghua Shi (1)
    Ying Guo (1)
    Xiaoqi Peng (2)
    Moon Ho Lee (3)

    1. School of Information Science and Engineering, Central South University, Changsha, 410083, China
    3. Institute of Information and Communication, Chonbuk National University, Chonju, 561-756, Korea
    2. Department of Information Science and Engineering, Hunan First Normal University, Changsha, 410205, China
  • ISSN:1573-1332
文摘
Motivated by the space-time diversity transmission technique in wireless communications, a novel probabilistic quantum relay communication scheme in the quantum noisy channel is proposed in order to maximize the correct information transmission and the range of quantum communication, in which quantum signal sequences that carrying two-particle entangled states are transmitted from two senders to two relays and then retransmitted to the receiver after space-time encoded by relays. The quantum signal states can be restored via filtering out the channel noise with two-dimensional Bell measurements by the receiver. Analysis and discussions indicate that our scheme can increase and approximately double the range of quantum communication while not to reduce too much quantum signal-to-noise ratio, and meanwhile the security can be guaranteed under strongest collective attacks and LOCC attacks.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700